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Recently CAE is becoming widely used in the design of turbomachinery, such as turbochargers and aircraft 
engines, to predict its performance. In some specific cases, however, it is difficult to predict the performance using 
CAE. This is mainly because the physical phenomena are not completely clarified due to their complexities. 
Furthermore, CAE is also used in combination with the optimization techniques, such as genetic algorithms and 
response surface methods, to obtain a better design solution. Although many simulations are performed and 
accumulated, these optimization techniques cannot utilize the accumulated knowledge. In this research, two 
machine learning techniques, deep neural network and deep Q-network, are applied to two problems respectively: 
performance prediction of the volumetric flow at the surge of compressors and shape optimization for minimizing 
pressure drop of the low-pressure turbine airfoils. The results show that deep neural network has high predictive 
accuracy while not requiring physical models. It has also been confirmed that deep Q-network acquires high 
generalization capabilities to be applied to different scenarios by training with various conditions. In addition, it 
has been revealed that deep Q-network puts large weight at the same point as well-trained designers do.

1.	 Introduction

In recent years, CAE (Computer Aided Engineering) has 
become widely used in the design of turbomachinery, such 
as turbochargers and aircraft engines. Using CAE, a product 
can be modeled to the extent within which analysis is 
possible, and its performance can be predicted through 
numerical analysis. In some specific cases, however, it is not 
possible to adequately predict performance with CAE only, 
and a typical example of this is compressor surge.

In a vehicle turbocharger, if a self-excited vibration 
phenomenon accompanied by large amplitude pressure and 
flow rate fluctuations, known as surge, occurs in the whole 
piping system, including the compressor, then not only does 
the turbocharger fail to fulfill its role, but the pressure 
fluctuation and vibrations may damage the compressor and 
its peripheral equipment. Therefore, surge is considered as a 
phenomenon to be avoided at any cost, and when expanding 
the operating range of compressors, it is important to predict 
the volumetric flow at the peak pressure ratio point 
(volumetric flow rate at surge) in the design phase. A 
common method of predicting the volumetric flow rate at 
surge is to predict overall compressor performance, i.e., 
pressure ratio-flow characteristics, by performing a three-
dimensional steady flow analysis with CFD (Computational 
Fluid Dynamics) at multiple operating points. However, at 
the preliminary design phase, the three-dimensional shape 

has not yet been determined, and it is unrealistic in terms of 
calculation cost to conduct a CFD analysis for every possible 
shape. Even if the three-dimensional shape has been 
determined, at the low flow rates close to the volumetric flow 
rate at surge, performance could deteriorate due to unsteady 
phenomena such as rotating stall, and the calculation tends 
to be unstable. Therefore, using steady flow analysis, it is 
often difficult to accurately predict overall compressor 
performance. Even if unsteady flow analysis is performed, it 
is difficult to quantitatively reproduce the volumetric flow 
rate at surge and sufficiently understand the flow field at the 
low flow rates close to it. For these reasons, there is no 
established technique for predicting the volumetric flow rate 
at surge using CFD in the design phase and, at present, it is 
qualitatively estimated based on past data for similar shapes, 
etc., which depends on the knowledge of the designers. For 
this reason, reconsidering design methodology tends to be 
required, resulting in increased product development cost. In 
order to establish a prediction technique, it is important to 
elucidate the surge phenomenon and develop physical 
models, but a large amount of research is still currently 
required. In such a situation, it is considered effective to 
develop a system that uses physical models to predict the 
known part of the phenomenon, and machine learning based 
on data to predict the unknown part. The reliability of such a 
system will be enhanced by replacing the machine learning 
part with physical models as understanding of the 
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phenomenon progresses.
In addition, the purpose of using CAE is to obtain a better 

design solution, and searching for this design solution 
involves repeated performance of many numerical analyses. 
These many trials and analytical results constitute a precious 
asset, and a better design solution can be obtained more 
quickly by analyzing and using them effectively. Hitherto, 
the evolutionary algorithm(1) and the response surface 
methodology(2) have been used for optimization, but with 
these techniques, the analysis must be redone from the 
beginning if the flow boundary conditions are different and 
past analysis results cannot be used, so that use of past 
analysis results as an asset is difficult. However, for example, 
even with new design conditions, experienced designers can 
make deductions based on their own design experience and, 
in a similar manner, there should be some method of using 
the knowledge obtained from past analyses even with 
different flow boundary conditions. Research is underway to 
achieve such capabilities through machine learning(3), and 
these are known as generalizability because they can be used 
not only under specific conditions but also for general 
purposes. This paper discusses reinforcement learning, 
which is a relatively new machine learning technique 
characterized by a high level of generalizability. If this high 
generalizability can be used in the design phase, it may be 
possible to reduce analysis time to less than that required by 
conventional optimization techniques. In addition, feeding 
back the design points learned by machine learning to the 
designers may enable them to verify the soundness of the 
machine learning model and obtain new findings. This paper 
also describes the potential of such feedback.

As mentioned above, this paper describes a prediction 
technique for volumetric flow rate at surge which uses a 
DNN (Deep Neural Network)(4) to complement the unknown 
part of the physical model, and describes a design solution 
search technique which uses the high generalizability of a 
DQN (Deep Q-Network)(5) —  a reinforcement learning 
technique — together with past analysis data.

2.	 Design support techniques using machine 
learning and CAE

2.1	 Overview of machine learning techniques
2.1.1	 Deep Neural Networks
In recent years, machine learning has been attracting 
attention as a technique for discovering data features and the 
laws existing between different groups of data, and for 
predicting unknown values, with NN (Neural Networks) 
being a representative machine learning technique. Using 
NN, a complicated nonlinear function can be represented by 
connecting multiple nodes in layers and changing the 
connection strength between nodes, called the weight, 
through training. Even for a complicated phenomenon such 
as a surge, it is considered possible to predict the volumetric 
flow rate at surge by associating the shape parameters and 
volumetric flow rate at surge based on abundant data. 
Examples of application of NN to mechanical products 
include prediction and optimization of engine efficiency and 

pollutant emissions such as NOx
(6), (7), prediction of misfire 

in diesel engines(8), and prediction of the position of the 
reluctance motor rotor(9). In addition, there have been reports 
of NN being used to predict the compressive strength of 
concrete based on the amounts of slag and fly ash(10).

Figure 1 shows the structure of a four-layered NN, which 
has two intermediate layers between the input layer and 
output layer. The NN in Fig.  1, in which all nodes are 
connected across different layers, is called a FCNN (Fully-
Connected Neural Network). The NN consists of input 
nodes, bias nodes, summation nodes, and activation function 
nodes. Input nodes pass the received value directly to the 
next layer; bias nodes always pass 1; summation nodes pass 
the sum of the received values to the next layer; and activation 
function nodes pass the received value to the next layer after 
processing it with a function. The summation and activation 
function nodes perform the following calculations and pass 
the output to the next layer.
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In these equations, oi
l
,sum and oi

l
, func represent the outputs of 

the i-th summation node and activation function nodes of the 
l-th layer where the input layer is l = 0, bi

l represents bias, wik
l  

represents the weight of the connection from the k-th node of 
the (l − 1)-th layer to the i-th node of the l-th layer, and N l-1 
represents the number of nodes in the (l − 1)-th layer.

f ( · ) is called an activation function, for which a nonlinear 
function, such as Sigmoid, tanh, ReLU(11), or leaky ReLU(12) 
is commonly used. The final output is obtained by calculating 
Equations (1) and (2) repeatedly for all nodes from the input 
layer to output layer, so that, generally, an NN with a larger 
number of layers and nodes can represent a more complicated 
function. An NN having two or more intermediate layers is 
called a DNN.
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One type of NN training is called supervised training, in 
which input x and corresponding answer t are given, and 
weight w and bias b are updated so that the output y of the 
NN is as close to answer t as possible. The tasks performed 
in supervised training are regression and classification, and, 
in this paper, regression for supervised training is performed 
in order to predict volumetric flow rate at surge based on past 
test data. To update the weight for regression, the following 
equation is used:
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In this equation, h is the learning coefficient, and E is the 
error function. The following square error is commonly used 
in regression:
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NL is the number of nodes in the output layer, ok
L
, func is the 

output of the output layer (= yk), and tk is the corresponding 
answer. The second term is a normalization term for 
suppressing overtraining, which is described below, and l is 
the normalization rate, which represents the degree of 
suppression. Training coefficient h in Equation (3) is related 
to the training speed and whether or not the solution is local, 
and various algorithms have been proposed for optimizing 
the training coefficient through training. Among such 
algorithms, Adam(13) is commonly used as one that provides 
stable, accurate training results.

In supervised training by machine learning, including NN, 
overtraining sometimes occurs, which is a phenomenon in 
which overfitting to the training data results in poor 
prediction performance with unknown data. Normalization 
in the second term of Equation (4) is introduced to suppress 
overtraining, but dropout(14) is also commonly used. Dropout 
is a technique that excludes a certain percentage of the nodes 
in the intermediate layers from training. Each time training 
data are given to the NN, the nodes to be excluded change 
randomly. This makes it possible to obtain the same results 
as when the results of training with multiple NNs are 
averaged, which works as an effective means of suppressing 
overtraining.
2.1.2	 Deep Q-Network
RL (Reinforcement Learning) is a machine learning 
technique which involves learning through trial and error the 
action that will maximize a value which is set in a specific 
environment. Examples of use of RL include AlphaGo(15), 
which won a game of Go against a professional player, robot 
arms(16), and autonomous driving of automobiles(17).

Figure 2 shows the basic structure of RL, which consists of 
an environment and an agent that determines what action to 

take in response to that environment.
The agent selects the next action to take at based on state st 

at the t-th attempt, and sends it to the environment. The 
environment sends the state st+1, which has changed in 
response to the received action at, and the previously set 
reward rt+1 for that action to the agent. Various RL techniques 
have been proposed that adopt different ways of selecting the 
action according to the state; in one of these, Q learning, the 
value of the action is determined using the Q function (action 
value function), which can be represented by the following 
equation, and the agent selects the action with the highest 
value.

Q s a Q s at t t t, ,( ) ← ( )
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In this equation, a (0  < a  ≤ 1) is the learning rate, g  
(0 < g ≤ 1) is the discount factor, and A represents all the 
actions that can be taken. The second term of Equation (5) 
represents the difference between the expected and current 
values of the action value, and the current action value is 
updated by this difference. In actual Q learning, the Q 
function is created using table functions, and it is necessary 
to hold values corresponding to every possible state and 
combination of actions. However, if the state is obtained as 
an image, such as in AlphaGo and autonomous driving, the 
amount of Q function data is enormous, making training 
difficult. To overcome this problem, DQN uses an NN as an 
approximation function for the Q function.

DQN approximates the Q function using supervised 
training, but no answer can be obtained because it is not 
possible to know the true value of the Q function. Therefore, 
the expected value for the action value in Equation (5) is 
used as the answer. In this case, the error function EDQN for 
the NN is as follows:
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In this equation, Qq represents the approximate Q function 

obtained by using the NN. A locally-optimized Q function 
can be obtained by performing training such that the second 
term on the right side of Equation (5), which corresponds to 
the update amount of the Q function, is zero.

As previously described, if the state is obtained as an image, 
then a CNN (Convolutional Neural Network)(19), shown in 
Fig.  3, is used. A CNN consists of convolutional layers, 
which extract feature values, and pooling layers, which 
decrease the number of dimensions. In the convolutional 
layers, the same operation as the filtering used in image 
processing is performed using the weights of the network, 
and the filter is updated through training, thereby enabling 
extraction of important feature values. In the pooling layers, 
the mean and maximum values in a certain range are 
extracted, but there is no updating through training. In image 
recognition by CNN, the output is generally obtained by 
using an FCNN after using a combination of convolutional 
and pooling layers multiple times. When a CNN is used in 
the DQN, the next action is determined based on the action 

Agent t

at : Actionst : State

st+1

rt : Reward
rt+1

Environment

Fig. 2   Schematic image of RL(18)
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value obtained from the image. This mechanism imitates the 
process by which humans learn and select their actions based 
on visual information.
2.2	 Prediction of volumetric flow rate at surge using 

DNN
In this study, we used a DNN to predict the volumetric flow 
rate at surge of a turbocharger, and constructed a prediction 
model using past test data of actual products.
2.2.1	 Data used
We used pressure ratio-flow rate characteristics data 
measured in the past, as shown in Fig.  4. Taking the 
volumetric flow rate at surge to be the volumetric flow rate 
at peak pressure ratio on a third-order spline curve fitted to 
the measurement points, we obtained the volumetric flow 
rate and pressure ratio at surge, and used a DNN to create a 
regression model that predicts the surge flow rate coefficient 
fsurge and pressure coefficient msurge, which are calculated 
using Equations (7) and (8).
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In these equations, Qsurge and Psurge are the volumetric flow 
rate and pressure ratio at surge, respectively, Nrot is the 
rotational speed, D is the outer diameter of the impeller, and 
Mu is the impeller tip Mach number. T0 is 293.15 K, g is 1.4, 
and R is 287 J/kg·K. There were data for 102 product types, 
and volumetric flow rate and pressure ratio at surge were 
obtained for four to seven different impeller tip Mach 
number per product type, so that the total number of samples 
was 574. As input parameters for training, we used a total of 
104 parameters consisting of 100 shape parameters that were 
selected by experts with abundant knowledge of turbochargers 
as being related to the occurrence of surge, 1 impeller tip 
Mach number, and 3 predicted values for surge flow rate 
coefficient obtained from 3 simple, one-dimensional physical 
models.

In not only DNNs but also other types of machine learning, 
data division techniques are used to evaluate the training 
results. Holdout is a data division technique in which data 
are divided into training and verification data, and prediction 
accuracy is verified with the verification data after training 
with the training data. Since the verification data are not 
used for training, the prediction accuracy for unknown data 
can be evaluated. Cross validation is another data division 
technique, in which data are divided into several groups, one 
of which is used to verify the prediction accuracy after 
training is performed with the other groups(20). Exchanging 
the group used for verification each time, this is performed 
the same number of times as the number of groups, and the 
prediction accuracies obtained are averaged to give the final 
prediction accuracy. Since cross validation allows all the 
prepared data to be used for training, it is often used to set 
the parameters used in training. In this study, holdout was 
used. Of 102 product types, 6 (number of samples: 31) were 
used as verification data, and the remaining 96 (number of 
samples: 543) as training data.
2.2.2	 Hyper parameters for DNN
A DNN involves a large number of parameters — such as 
number of nodes and normalization rate — which are called 
hyper parameters. In addition to these being determined 
based on the user’s experience, use is also made of the grid 
search, which tries all combinations of hyper parameters, 
random search, which changes hyper parameter values 
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randomly within a specified range, and Bayesian 
optimization(21), which is a type of optimization technique. 
In this study, Bayesian optimization was used to determine 
hyper parameters. Using Bayesian optimization, the hyper 
parameters that are expected to minimize the prediction 
error can be obtained by treating the DNN as a prediction 
error function that has the hyper parameters as its variables, 
and approximating the prediction error for the hyper 
parameters using a probabilistic regression technique, such 
as Gaussian process regression.

When determining hyper parameters by Bayesian 
optimization, the above-mentioned cross validation — with 
the number of divisions set to 5 — was used to evaluate the 
square error of the predicted values for volumetric flow rate 
at surge. Chainer ver. 3.1.0(22) was used for DNN training, 
and GPyOpt ver.  1.0.3(23) for Bayesian optimization. Five 
hyper parameters were optimized: number of epochs, batch 
size, number of nodes in an intermediate layer, number of 
intermediate layers, and dropout rate. All the intermediate 
layers had the same number of nodes. The other hyper 
parameters were given fixed values, the activation function 
was leaky ReLU, the optimization technique for the training 
coefficient was Adam, the normalization rate was l  = 
0.000  5, and the initial value distribution for weight was 
LeCun Normal (mean 0, standard deviation 1/ n (n: 
number of nodes in each layer)). Table 1 shows the search 
ranges for the hyper parameters and optimal values obtained 
by Bayesian optimization. This table shows the optimized 
results for training for volumetric flow rate at surge, but the 
same values were used for training for pressure ratio at surge.
2.2.3	 Results and discussion
We evaluated the results obtained in this section by converting 
the predicted surge flow rate coefficient fsurge and pressure 
coefficient msurge to volumetric flow rate and pressure ratio at 
surge using Equations (7) and (8).

We first verified the effectiveness of the DNN by comparing 
its training results to those of three other machine learning 
techniques: SVM (Support Vector Machine), RF (Random 
Forest), and KRR (Kernel Ridge Regression). For those 
three techniques, we determined hyper parameters by 
random search and used Scikit-learn ver.  0.19.1(24) for 
training. Table  2 shows the RMSE (Root Mean Squared 
Errors) for the predicted volumetric flow rate at surge for the 
six product types used as verification data. The RMSE is 
defined by the following equation:
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In this equation, M is the number of samples, and ti and yi 
are the answer and predicted value for sample i, respectively. 
Looking at the results for the whole of the verification data 
in Table 2, it can be seen that the DNN has higher prediction 
accuracy than the other machine learning techniques. Even 
when individual product types are compared, the DNN has 
the highest accuracy in most cases, and even where another 
technique is more accurate, the difference is very small. 
From the above, it was confirmed that the DNN is effective 
for predicting volumetric flow rate at surge. Since the surge 
phenomenon is highly nonlinear, it may be presumed that the 
DNN, which can represent nonlinearity better than the other 
techniques, is more effective.

Figure 5 shows the pressure ratio-flow rate characteristics, 
and the measured and DNN-predicted volumetric flow rates 
and pressure ratios at surge for the six product types used as 
verification data. On both the vertical and horizontal axes, 
the predicted values are the values predicted by the DNN. 
The mechanism of surge occurrence differs depending on 
the operating conditions of the compressor, and this is 
thought to affect prediction accuracy. Table  3 shows the 
volumetric flow rate at surge for the six product types used 
as verification data, the RMSE of the pressure ratio at surge 
for each product type, and the RMSE for the low-speed 
(Mu < 1.3) and high-speed (Mu > 1.3) conditions. Focusing 
on the volumetric flow rate at surge in Table 3, it can be seen 
that product type F has lower prediction accuracy than any 
other product type. Figure 6 shows histograms, created from 
the training data, of the specific shape parameters a and b 
which are considered to strongly affect the surge 
phenomenon, and also shows to which bin of the histogram 
the shape parameters a and b for product types A to F 
belong. From Fig.  6, it can be seen that the training data 
contain a relatively large number of shape parameter a and b 
values at the same level as for product types A to E, but that 
there are few or no such values for product type F, and it is 
presumed that prediction accuracy was affected by the 
difference in the relative amounts of data contained in the 
training data.

In Table 3, focusing on the differences between the low-
speed and high-speed conditions for volumetric flow rate 
and pressure ratio at surge, it can be seen that prediction 
accuracy tends to be low in the high-speed condition 
regardless of the product type. In the training data, the ratios 

Table 1   Hyper parameters optimized by Bayesian optimization

Hyper parameter Unit Search range Optimal value

Number of epochs epochs 1 000 to 3 000 2 204

Batch size items/batch 100 to 600 543

Number of nodes in 
an intermediate layer

nodes 50 to 520 450

Number of 
intermediate layers

layers 3 to 10 6

Dropout rate — 0.000 to 0.510 0.316

Table 2   Performance comparison of DNN and other machine 
learning methods

Product type

RMSE for volumetric flow rate at surge
(kg/m3)

DNN SVM RF KRR

A 0.229 7 0.242 1 0.468 3 0.742 3

B 0.032 4 0.807 7 0.188 5 0.476 8

C 0.083 7 0.276 6 0.316 1 0.663 0

D 0.101 3 0.473 3 0.141 2 0.302 2

E 0.196 8 0.319 5 0.176 5 0.162 9

F 0.387 4 0.442 8 0.352 7 0.447 2

Whole of verification data 0.208 3 0.448 0 0.293 3 0.494 1



Vo l .  5 4   N o .  2   2 0 21 6

Table 3   RMSE of prediction of volumetric flow rate and pressure ratio at surge for test data

Product type

RMSE for volumetric flow rate at surge
(kg/m3)

RMSE for pressure ratio at surge
(–)

Total Mu < 1.3 Mu > 1.3 Total Mu < 1.3 Mu > 1.3

A 0.229 7 0.076 0 0.349 4 0.005 3 0.004 2 0.006 5

B 0.032 4 0.036 5 0.014 7 0.060 9 0.040 3 0.099 8

C 0.083 7 0.048 5 0.118 2 0.046 2 0.012 2 0.071 5

D 0.101 3 0.098 2 0.104 2 0.052 9 0.008 8 0.074 2

E 0.196 8 0.081 9 0.266 0 0.010 5 0.004 6 0.014 2

F 0.387 4 0.180 5 0.787 5 0.036 8 0.006 1 0.081 3

Whole of verification data 0.208 3 0.104 6 0.307 9 0.040 1 0.017 5 0.060 6
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Fig. 5   Prediction of volumetric flow rate at surge and pressure ratio at surge for test data
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of the number of samples for the low-speed and high-speed 
conditions are respectively 62% (339 samples) and 38% 
(204 samples) of the total number of samples, and so one 
cause of the differences in prediction accuracy is believed to 
be the relatively small number of samples for the high-speed 
condition. The number of samples was different because 
measurement in the high-speed condition is more difficult 
than in the low-speed condition.

The RMSE is related to the loss function of the DNN, and 
is therefore suitable for evaluating the process of convergence 
but not for intuitively evaluating the prediction error. 
Therefore, instead of RMSE, we used the MRE (Mean 
Relative Error), which is a relative error defined in relation 
to the true value, to evaluate prediction performance. MRE 
is defined by the following equation:

MRE =
−

=
∑1

1M

t y

ti

M
i i

i  
.
    

..........................................(10)

From the MRE values shown for the whole of the 
verification data in Table 4, it can be seen that the MRE for 
volumetric flow rate at surge is approximately 5% and that 
for pressure ratio at surge is approximately 1%, so that the 
pressure ratio at surge can be predicted more accurately. One 
reason for this is believed to be that the pressure ratio at 
surge has a strong correlation with impeller tip Mach 
number. This is clearly shown by the relationships, illustrated 
in Fig. 7, that exist between the impeller tip Mach number, 
and volumetric flow rate and pressure ratio at surge in the 
training data used in this study. Although different data were 
used, when the volumetric flow rate at surge was predicted 

with Tamaki’s(25) one-dimensional physical model, the MRE 
was approximately 10%, so that prediction was relatively 
accurate, almost achieving the target MRE value of 5%.
2.3	 Minimization of pressure loss of LPT (Low-

Pressure Turbine) airfoil with DQN
To verify the performance of the DQN, we first performed a 
numerical experiment for shape optimization of a NACA 
(National Advisory Committee for Aeronautics) blade, 
which is a blade profile used for wind turbine generators and 
airplanes, using lift-to-drag ratio as the objective function. 
Following this, we performed shape optimization of a LPT 
(Low-Pressure Turbine) blade using pressure loss as the 
objective function. We used Chainer RL ver. 0.3.0(26) for DQN 
training.
2.3.1	 Maximization of lift-to-drag ratio of NACA 

blade
An NACA blade has a blade profile, such as NACA6410, 
whose name contains numerical values that represent 
parameters which uniquely determine its shape. The NACA 
4-digit series contains three shape parameters: maximum 
camber normalized by chord length, maximum camber 
position, and maximum blade thickness. The NACA 5-digit 
series contains the centerline profile in addition to these 
parameters. Figure 8 shows an example of the NACA 4-digit 
series. In this study, the blade profile was fixed and the angle 
of attack, at which the fluid hits the leading edge of the 
blade, was optimized with a DQN so that the lift-to-drag 
ratio, which is larger-the-better, was maximized. The agent 
selected whether to increase or decrease the angle of attack, 
and this increase/decrease was defined as action at. The 
angle of attack was changed in increments of 1 degrees from 
0 to 40 degrees. The agent was designed to receive a 400 × 
400 px pressure contour diagram as state st and the scalar 
value of the lift-to-drag ratio as reward rt. The contour 
diagram was output by creating a mesh having an appropriate 
external environment for the angle of attack, and performing 
two-dimensional steady incompressible CFD calculation 
and post-processing. In order for the agent to determine 

Impeller tip Mach number Impeller tip Mach number

(a)  Volumetric flow rate at surge (R = 0.750) (b)  Pressure ratio at surge (R = 0.976)

V
ol

um
et

ri
c 

fl
ow

 r
at

e 
at

 s
ur

ge

Low High Low High

L
ow

H
ig

h

P
re

ss
ur

e 
ra

ti
o 

at
 s

ur
ge

L
ow

H
ig

h

Fig. 7   Correlation coefficient R between impeller tip Mach number and prediction targets for training data

Table 4   MRE of prediction of volumetric flow rate at surge and  
               pressure ratio at surge for test data	

Product type
Volumetric flow rate 

at surge
(%)

Pressure ratio at surge
(%)

Whole of verification data 5.02 1.38
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whether to increase or decrease the angle of attack based on 
the pressure contour diagram, the CNN specialized for 
image recognition described in Section  2.1.2 was used to 
approximate the Q function. For CFD, OpenFOAM 
ver.  1706(27) was used, and the boundary conditions are 
shown in Fig. 9. The inlet boundary was set to a flow rate of 
1 m/s, the outlet static pressure to 0 Pa, the blade surface to 
a non-slip condition, and the upper and lower boundaries of 
the analytical range to a slip condition, with a k-e model 
being used for turbulence. In addition, the chord length and 
fluid density were set to 1 m and 1 kg/m3, respectively, and 
training with the DQN was performed under three conditions, 
i.e., fluid viscosities of 1.0 × 10-3, 1.0 × 10-5, 1.0 × 10-7 Pa·s, 
so that Re (Reynolds number) was 103, 105, and 107. A flow 
field with an Re of 103 has laminar flow, for which it is not 
appropriate to use a k-e model, and, in addition, in a 
separation region with an angle of attack of 20 degrees or 
more, a turbulence model must be selected which is 
appropriate for the size of vortex generated and grid 
resolution. However, since the purpose of this study is to 
verify the performance of the DQN, we determined the grid 
resolution and turbulence model in accordance with the 
angle of attack at which the lift-to-drag ratio is maximized, 
i.e., 5 to 20 degrees, in order to simplify the system. In the 
training, the initial angle of attack was determined randomly, 
and the agent changed the angle 50 times for 1 set, 400 sets 

being performed. As a reward, rt = +1 was given when the 
lift-to-drag ratio increased after the angle of attack was 
changed, and rt = -1 was given when it decreased. Here, as 
numerical experiments, we performed four experiments with 
different combinations of training and verification processes, 
as shown in Table  5, and evaluated the optimization 
performance of the DQN. With regard to the four numerical 
experiments shown in Table 5: in No. 1, the same 4-digit 
series was used for training and verification but different 
blade shapes were used; in No. 2, different blade series were 
used for training and verification; in No. 3, different blade 
shapes and Re values were used for training and verification; 
and in No. 4, training was performed under low-speed and 
high-speed conditions, and verification was performed 
under middle-speed conditions.

Figure 10-(a) shows the transition from the initial to the 
converged solution during verification for one of the blade 
shapes in No. 1. From the initial condition with an angle of 
attack of 37  degrees, the angle gradually decreased and 
converged to 6 degrees. Figure 11-(a) shows the pressure 
contours for the initial and converged solutions illustrated in 
Fig. 10-(a). In the initial solution, the pressure is lower at the 
leading edge of the blade, and separation occurs. In the 
converged solution, however, the low-pressure area is 
smaller, and it is presumed that the agent detected the 
separation indicated by the pressure contours and took action 
to decrease the angle of attack. Figure  12 shows the 
transition of action value function Qq for one of the sets 
during the training in No.  1, with the horizontal axis 
indicating the number of actions taken in the set. Before the 
number of actions reached around 30, the action value for 
decreasing the angle of attack was higher than that for 
increasing it. This shows that the agent clearly judged that it 
should take action to decrease the angle of attack because the 
initial angle was large. After the number of actions reached 
30, the difference between the action values for increasing 
and decreasing the angle was small, meaning that the 
converged solution had almost been reached and the angle of 
attack stopped decreasing.

To evaluate the performance of the DQN in Nos. 1 to 4, the 
lift-to-drag ratio at the angle of attack at which the agent’s 
actions converged was divided by the optimal lift-to-drag 
ratio within the search range of the agent. This calculation 
was performed for 20 blade shapes, and the average values 
for Nos.  1 to 4 are shown in Fig.  13. The larger the 
performance value shown on the vertical axis is, the higher 
the DQN’s performance is. In No. 2, the NACA 5-digit series 
was used in verification, but Re was not changed, so it can be 

Table 5   Conditions of numerical experiments

No.
Training Verification

NACA Re NACA Re

1 4-digit series 103 4-digit series 103

2 4-digit series 103 5-digit series 103

3 4-digit series 103 4-digit series 105

4 4-digit series 103, 107 4-digit series 105

Chord length l

(Note) NACA XYZZ
 X = c / l × 100 : Maximum camber
 Y = xc / l × 10 : Maximum camber position
 ZZ = t / l × 100 : Maximum blade thickness

c

xc

t

Centerline

Fig. 8   Schematic image of NACA 4-digits

No-slip condition

(Note) : Inlet boundary 1 m/s
 : Outlet static pressure 0 Pa
 : Slip condition

Fig. 9   Boundary conditions
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seen that the performance for No. 2 is almost the same as 
that for No. 1. In No. 3, where Re was changed in verification, 
the performance value is approximately 17 points smaller 
than for Nos. 1 and 2. This is presumably because, since Re 
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Fig. 13   Performance comparison among each numerical  
	     experiment	
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was different, some tendency that was not observed in 
training appeared in the pressure contours obtained by 
verification, showing that performance cannot be properly 
optimized if the flow field changes. Figure 10-(b) shows the 
transition from the initial to the converged solution during 
verification for one of the blade shapes in No. 3, and Fig. 11-
(b) shows the pressure contours of the initial and converged 
solutions illustrated in Fig.  10-(b). The optimal angle of 
attack for this blade shape is 15 degrees, but Fig. 10 shows 
that the angle converged to 32 degrees. In addition, Fig. 11-
(b) shows that the separation at the leading edge observed in 
the initial solution remains in the converged solution. At the 
same time, it can be seen from Fig. 13 that the performance 
value for No. 4 — which even for an Re not used in training 
is within the interpolation range of the training conditions — 
is almost the same as those for Nos. 1 and 2. From the above, 
it is presumed that a trained agent can be reused by training 
it with a DQN again under a wider range of conditions.
2.3.2	 Minimization of pressure loss of LPT airfoil
Using PACK B(28) —  which is a blade shape used in low-
pressure turbines for aircraft engines  — as a basis, we 
performed shape optimization to minimize pressure loss. We 
used four design variables, these being the camber length 
and blade thickness at the 1/3 and 2/3 positions of the chord 
length, as shown in Fig. 14. Here, the flow field conditions 
were fixed and the four design variables were optimized with 
a DQN so that the pressure loss, which is smaller-the-better, 
was minimized under the constraint conditions. The agent 
was designed to receive a 400  × 400  px Mach number 
contour diagram as state st. The contour diagram was output 
by creating a mesh having an appropriate external 
environment for the design variables, and performing two-
dimensional steady incompressible CFD calculation and 
post-processing. In order for the agent to approximate the Q 
function, a CNN was used in which action at was taken that 

changes the four design variables based on the Mach contour 
diagram. If a constraint condition is applied to the DQN, it is 
necessary to consider both the objective function and 
constraint condition when defining the reward. Here, the 
objective function was pressure loss, and the constraint 
range was set to an outlet angle of -58.3 ± 0.2 degrees. In 
addition, as a reward, the evaluation function f represented 
by Equation (11) was defined, and rt = +1 was given when 
the evaluation function increased, and rt  = -1 when it 
decreased.

f cP= − − −drop constq q     .........................................(11)
In this equation, Pdrop is pressure loss [ - ], qconst (= -58.3º) 

is the constraint condition outlet angle, and q is the outlet 
angle obtained by CFD. The first term in Equation (11) 
represents the objective function and the second term the 
constraint condition, and these are weighted by a constant c 
(= 500). Pressure loss Pdrop is calculated by the following 
equation:

P
P P

P P

T T

T Sdrop
Inlet Outlet

Outlet Outlet

=
−
−  

.
    

..........................................(12)

In this equation, PT
Inlet is the total pressure at the inlet, PT

Outlet 
is the total pressure at the outlet, and PS

Outlet is the static 
pressure at the outlet, each of which can be obtained by CFD. 
In the training, the initial shape was determined randomly, 
and 200 sets of training were performed, with the shape 
being changed 50 times in each set.

Figure 15 shows the transition to the converged solution 
when an initial solution was optimized using a trained agent 
(-(a)) and the distribution of converged solutions for 15 
initial solutions (-(b)). The horizontal axis shows outlet 
angle, which is the constraint condition, and the vertical axis 
shows pressure loss, which is the objective function. The 
optimal solution is the one for which pressure loss is 
minimum within the constraint range shown in the figure. In 
Fig. 15, the points for approximately 12 000 shape candidates 
are also plotted. From Fig.  15-(a), it can be seen that the 
solution converges within the constraint range. In addition, 
Fig. 15-(b) shows that almost all the randomly created initial 
shapes converge to optimal solutions within the constraint 
range.

Figure  16-(a) shows the Mach number contours for the 
initial and converged solutions in Fig.  15-(a). In general, 
when designers design a blade based on the Mach number 
contour, they focus on areas ① and ② in Fig. 16-(a), and 
evaluate pressure loss based on the separation at the back-
side trailing edge, and outlet angle based on the velocity 
distribution at the leading edge. Therefore, so as to understand 
which part of the Mach contour received as a state the agent 
focuses on in order to determine its actions, we examined the 
feature map (image filtered in the convolutional layer) for 
the contour diagram input into the CNN which approximates 
the Q function. For the Mach number contour in Fig. 16-(a), 
multiple feature maps can be obtained from the CNN. Two 
maps, A and B, were selected from among these, and are 
shown in Figs. 16-(b) and -(c). To improve visualization of 
the feature maps, the blade shape and calculation range are 
shown for convenience. The bright areas in each feature map 
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 Design variable 4 : Blade thickness at 2/3 position of chord length
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Fig. 14   Design variables of LPT airfoil
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indicate characteristic areas in the Mach number contour 
extracted by filtering. From the feature maps in Figs. 16-(b) 
and -(c), it can be seen that features appear at the leading and 
back-side trailing edges in the initial solution but disappear 
in the converged solution. From this, it is presumed that the 

agent took action to eliminate the features appearing in each 
area. The areas where features appear and then disappear 
correspond to the areas ① and ② that designers focus on, as 
shown in Fig.  16-(a), so it can be said that the agent and 
designers focus on the same points.
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Fig. 16   Mach number contour and feature maps of initial and converged solutions of Fig. 15-(a)
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3.	 Conclusion

In order to develop a performance prediction technique 
using machine learning and design solution search technique 
using reinforcement learning that complement the unknown 
parts of the relevant physical phenomena, we investigated 
vehicle turbocharger compressors and LPT airfoils — which 
constitute turbomachinery, predicted volumetric flow rate 
with a DNN using the calculated values obtained by one-
dimensional CAE, and minimized pressure loss through a 
combination of CAE and a DQN.

In predicting the volumetric flow rate at surge of a 
compressor using a DNN, we successfully developed a 
prediction model at low cost by utilizing past measurement 
data for training, and, with unknown data, predicted pressure 
loss with a relative error of approximately 5%. Because the 
input parameter values used for prediction are not included 
in the training data and prediction accuracy decreases under 
extrapolated conditions, it is important to expand the training 
data and reduce the extrapolation region as much as possible. 
The prediction model developed through this technique 
enables high-speed low-cost prediction and is expected to be 
used in the early stages of the design process.

With regard to optimization using a DQN, we have 
confirmed that the agent can be properly trained within the 
conditions learned through numerical experiments. It has 
also been discovered that even outside the range of the 
learned conditions, if those conditions are within the 
interpolation range, then optimization with a DQN is 
possible. This suggests that as long as training is performed 
such as to cover a sufficient design range, appropriate 
optimization is possible for various problems. In minimizing 
the pressure loss of an LPT airfoil, we confirmed that 
optimization can be achieved by setting an appropriate 
reward for a problem that has a constraint condition. Since 
this technique allows any reward to be defined, it can also be 
applied to other problems. Through feature maps of the 
convolutional layer of a CNN that approximates the Q 
function, we confirmed that the agent and designers focus on 
the same points. As was done in this study, feeding back the 
design points learned by machine learning to the designers 
may enable them to verify the validity of the machine 
learning model and obtain new findings.
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