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Structural materials undergo various types of damage during use, which can lead to deterioration and failure. 
To prevent failure or recurrence, it is necessary to identify the causes of damage. However, in conventional damage 
investigations, estimations have been mostly based on the knowledge and experience of evaluators, leading to 
subjective and unstable results. It is expected to make generalized estimations, that are not dependent on knowledge 
or experience, by using machine learning image classification methods for microstructure images of damaged 
materials. This paper presents the prediction results of machine learning model, which accuracy was 89 % by using 
EBSD (Electron Backscatter Diffraction) images of three types of damaged materials (creep, creep-fatigue, 
fatigue). This result shows the potential for accurately estimating damage patterns through this method.

1. Introduction

Structural materials undergo various types of damage 
depending on the service temperature and loading condition, 
which can lead to deterioration and failure. Particularly, 
damage in real environments is complicated, as it is often 
caused by the combined effects of multiple factors such as 
temperature, average stress, and load amplitude. It is required 
to analyze the state of materials during maintenance and 
damage investigation to clarify the causes of damage in 
order to prevent structural member failures and their 
recurrence. Generally, the causes of damage to metal 
materials are estimated based on evaluator’s insights by 
identifying their states through fracture surface and 
microstructure observations. Therefore, these estimations 
lead to subjective and unstable results.

Image classification methods using machine learning are 
anticipated to effectively solve this problem. It is expected 
that generalized estimations of damage causes, not reliant on 
the knowledge and experience of the evaluator, can be 
achieved by creating a dataset that links images of the 
microstructures of damaged materials with their respective 
damage patterns and applying machine learning.

Various types of optical and electronic microscopes are 
used to evaluate the microstructures of materials. Among 
them, EBSD (Electron Backscatter Diffraction) analysis is a 
method for quantitatively analyzing microstructures based 
on information about local crystal misorientation. Although 
there are many reports on the correlation between the strain 
amount and EBSD parameters(1), (2), these EBSD parameters 
are only applicable for evaluations using average values in 
visual fields. It is difficult to determine damage patterns 
only based on the average values of EBSD parameters if the 
strain amount is equivalent. Additionally, there is an absence 
of processes, such as evaluating the distribution of EBSD 

parameters in materials and correlating them with damage 
patterns.

This paper reports the creation of a model to estimate 
damage patterns based on the distribution information of 
EBSD parameters by applying image classification methods 
to EBSD images using machine learning. In this study, we 
also analyzed what features in the image the machine learning 
model focuses on to help clarify the damage mechanism.

2. Test and analysis methods

2.1 Creation of datasets
2.1.1 Material
In this study, Ti-6Al-4V alloy specimens were subjected to 
three types of damage (creep, creep-fatigue, and fatigue) at 
room temperature. It is known that the LCF (Low Cycle 
Fatigue) life of stainless steel and nickel based alloy tends to 
deteriorate under stress dwell at high temperature(3). This 
phenomenon is believed to be caused by creep that occurs at 
high temperature and is known as creep-fatigue. Furthermore, 
the creep deformation of Ti alloy has also been reported at 
room temperature(4). Hence, the fatigue life of Ti alloy 
deteriorates with stress dwell even at room temperature(5). 
This fatigue with stress dwell at room temperature is known 
as cold dwell fatigue.

The constant load creep test in this study was conducted 
with an initial stress of 876 MPa. The fatigue test conditions 
were a maximum stress of 876 MPa, a stress ratio R = 0, and 
loading and unloading times of 2 s. In the creep-fatigue test, 
a stress dwell of 120 s at the maximum stress in the fatigue 
test was included. These tests were interrupted when the 
strain reached 4 % in order to maintain an equal amount of 
strain. The average strain amount obtained from the 
elongation of the test specimens after the termination of the 
tests was 4.43 % in the creep test, 4.13 % in the creep-fatigue 
test, and 4.29 % in the fatigue test.
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2.1.2 Acquiring EBSD images
EBSD images of the cross sections parallel to loading 
direction were acquired from each specimen in six visual 
fields with an observation magnification of 400 times. The 
measurement range was 200 × 200 μm. The step size (pixel 
size) was 0.25 μm. The pixel shape was regular hexagon. 
Misorientation analysis was applied to EBSD images 
acquired in this way. Note that only the a phase was used for 
EBSD analysis in this study though the Ti-6Al-4V alloy has 
a biphasic structure consisting of the a and b phases. This is 
because deformation is mainly caused by the a phase and it 
is difficult to detect the b phase in the grain boundary in 
EBSD images because the low observation magnification 
was set to acquire a wide range of data.

In EBSD misorientation analysis, a crystal grain boundary 
is first defined based on the crystal orientation information 
for each pixel. Then, the misorientation in each pixel is 
calculated using various indices. The GROD (Grain 
Reference Orientation Deviation) and KAM (Kernel Average 
Misorientation) misorientation analysis indices were used in 
this study. GROD is an index that indicates the deformation 
gradient in the grain with reference to the average orientation 
in each crystal grain. This index is calculated with Equation 
(1).

GROD = q i − q ave      ..................................................(1)
Here, q i is the orientation of the i th pixel in each crystal grain, 
whereas q ave is the average orientation, which serves as the 
reference. On the other hand, KAM is an index that indicates 
the average misorientation with reference to surrounding 
pixels. This index is calculated with Equation (2).

KAM = ∑ ai / 6
=i 1

6

     
 ................................................ (2)

Here, ai is the misorientation between the target pixel and 
adjacent pixels. That is to say, KAM is the average 
misorientation between a hexagonal pixel and its six adjacent 
pixels.

In this study, in addition to the above two analysis methods, 
we used the grain boundary KAM and intragranular KAM, 
which are applied analysis methods of KAM. The grain 
boundary KAM is obtained by extracting measurement 
points around the grain boundary from the regular KAM. 
The grain boundary KAM is used when focusing on the 
misorientation in the grain boundary. On the other hand, the 
intragranular KAM is obtained by extracting measurement 
points other than those around the grain boundary. The 
intragranular KAM is used when focusing on misorientation 
in the grain. In this study, the area within five pixels of the 
grain boundary is defined to be around the grain boundary. 
Hence, measurement points in a 2.5 μm wide area (equivalent 
to 10 pixels) around the grain boundary were used for the 
grain boundary KAM, while the remaining measurement 
points were used for the intragranular KAM.

We output EBSD images acquired in the above-mentioned 
way as grayscale images of 800 (width) × 799 (height) pixels. 
Figure 1 shows typical visual fields. In each image, brighter 
pixels indicate larger misorientations. Since the amount of 
strain in the specimens with each inflicted damage was 
equivalent, the brightness of the EBSD images was almost 
the same. Therefore, it was difficult to determine damage 
patterns by human eye.

GROD KAM

Creep
Strain = 4.43 %

Creep-fatigue
Strain = 4.13 %

Fatigue
Strain = 4.29 %

Intragranular KAMGrain boundary KAM

Loading direction

(Note) The contrast in these images has been adjusted prioritizing visibility.

Fig. 1   Examples of EBSD images
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2.1.3 Creating datasets from EBSD images
We divided EBSD images of 800 × 799 pixels acquired in six 
visual fields for each of the three damage pattern types for 
training and test, and augmented the image data to create 
datasets for machine learning.

In machine learning, the amount of training data, in which 
the ground truth (label) for an input is known, is one of the 
critical factors that directly affect accuracy. Particularly in 
the materials field, it is difficult to collect a large amount of 
data in a standardized format due to high experiment costs 
and complicated manufacturing processes, hindering 
machine learning. Multiple data augmentation methods have 
been proposed to increase the number of image data using 
existing ones to solve this problem in image machine 
learning. Typical examples include rotation, inversion, 
translation, cropping, expansion, and reduction.

We employed cropping, rotation, and inversion for data 
augmentation in this study. Reducing the cropping size 
increases the number of images generated from an EBSD 
image. However, the visual field in an image would be 
narrower, increasing the possibility of events that lead to 
accuracy degradation. For example, the characteristics of 
macroscopic damage become difficult to reflect in the data 
or areas with the characteristics of local damage tend to be 
excluded from visual fields. Therefore, we compared three 
sizes of 400 × 400 pixels, 200 × 200 pixels, and 100 × 
100 pixels to evaluate the influence of the cropping size. The 
data augmentation processing generated 72 images that are 
400 × 400 pixels, 392 images that are 200 × 200 pixels, and 
1 800 images that are 100 × 100 pixels from one EBSD 
image.

We divided data for training and test from EBSD images 
before the data augmentation processing. This means that 
data was divided for training and test before cropped, rotated, 
or inverted images were mixed in. Specifically, we selected 
one visual field from the EBSD images of each damage 
acquired in the six visual fields in advance. Then, we used 
72, 392, and 1 800 images of the three damage forms 
acquired through the data augmentation processing for test 
and the images in the other five visual fields for training. In 
this way, the rotated or inverted versions of images used for 
training are not included in data for test, allowing the 
prediction accuracy for completely unknown visual fields to 
be evaluated.

The above processing generated datasets with the number 
of image data shown in Table 1 for each misorientation 
analysis method (GROD, KAM, grain boundary KAM, and 
intragranular KAM) and each damage pattern (creep, creep-
fatigue, and fatigue).

2.2 Machine learning method
2.2.1 Network structure
The network structure used for machine learning was ResNet 
(Residual Networks)(6). This is a type of convolutional neural 
network. For ResNet, five types with different complexities 
have been proposed: ResNet-18, 34, 50, 101, and 152. The 
number of image data handled in this study is approximately 
30 000 images at maximum. As this number is smaller than 
datasets widely known in the image recognition field such as 
114 MNIST (Mixed National Institute of Standards and 
Technology database, 70 000 images) and ImageNet (over 
14 million images), we used ResNet-18, which is the simplest 
network structure. After input images went through multiple 
convolutional layers, the probability of being classified as 
each label was calculated with the Softmax function. Cross 
entropy was used in the loss function that contributes to 
updating parameters, whereas Top-1 Accuracy is used in 
validation errors to determine the model to be used. After 
machine learning using this network, the probability that an 
image for test was classified as creep, creep-fatigue, or 
fatigue was calculated with the Softmax function using the 
model with the minimum validation error. The highest 
probability among the results was considered to be the 
prediction result for the image.
2.2.2 Machine learning result evaluation
It is necessary to compare the accuracy of acquired machine 
learning models quantitatively to compare the influence of 
the misorientation analysis methods and cropping sizes on 
EBSD. We used three indices (Accuracy, Precision, and 
Recall) to evaluate the accuracy of machine learning models 
in this study. These indices are calculated from a confusion 
matrix. The confusion matrix is a table that summarizes true/
false prediction results. Table 2 shows an example of the 
confusion matrix with two labels. A confusion matrix 
consists of the same number of rows and columns as that of 
labels. Each cell contains the corresponding number of 
image data. For example, the TP cell contains the number of 
image data for which the actual label and predicted label are 
both positive whereas the FN cell contains the number of 
image data for which the actual label is positive but the 
predicted label is negative.

First, Accuracy is an index that indicates the ratio of 
correctly predicted data to all data. Accuracy is calculated 
with Equation (3).

Accuracy
TP TN

TP FP TN FN
=

+
+++      

 ...................... (3)

Next, Precision is an index that indicates the ratio of 
actually positive data to data predicted to be positive. 
Precision is calculated with Equation (4).

Table 1   Number of data per one method of misorientation   
    analysis and one pattern of damage 

Cropping size Unit
Number of image 
data for training

Number of image 
data for test

400 × 400 pixels Piece 360 72

200 × 200 pixels Piece 1 960 392

100 × 100 pixels Piece 9 000 1 800

Table 2   Example of confusion matrix

Predicted label

Positive Negative

Actual label
Positive

TP
(True Positive)

FN
(False Negative)

Negative
FP

(False Positive)
TN

(True Negative)
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Precision
TP

TP FP
=

+      
 ........................................... (4)

Lastly, Recall is an index that indicates the ratio of data 
predicted to be positive to actually positive data. Recall is 
calculated with Equation (5).

Recall
TP

TP FN
=

+      
 ............................................... (5)

Generally, as one of these two indices increases, the other 
decreases. Which of them is prioritized is determined 
according to the nature of the problem to be handled.

In this study, since there were three label types (creep, 
creep-fatigue, and fatigue), the prediction using the machine 
learning model resulted in a 3 × 3 confusion matrix. Accuracy, 
and the Precision and Recall for each damage pattern were 
calculated for this confusion matrix, and these indices were 
used to compare the influence of the misorientation analysis 
methods and cropping sizes. We prioritized Recall over 
Precision in this evaluation because how correctly actual 
damage patterns are predicted is critical in the subject of this 
study.
2.3 Analysis of focus areas for machine learning
It was difficult to determine damage patterns by human eye 
only based on the EBSD images used in this study as 
described in Subsection 2.1.2. However, if these images 
can be classified using machine learning, it is suggested that 
there are differences between EBSD images with different 
damage patterns that the human eye cannot distinguish, and 
that these differences are recognized and classified by the 
machine learning. Therefore, it is assumed that differences 
in the characteristics of material organization depending on 
damage patterns can be clarified by visualizing the focus 
areas for machine learning. Many methods have recently 
been proposed to visualize what features in the image the 
machine learning model focuses on during prediction. In this 
study, we used one of these visualization methods, Grad-
CAM (Gradient-weighted Class Activation Mapping)(7), to 
visualize focus areas.

3. Analysis results and considerations

3.1 Influence of the EBSD analysis methods
First, we compared differences in the prediction accuracy of 
damage pattern between the four types of EBSD misorientation 
analysis methods (GROD, KAM, grain boundary KAM, and 
intragranular KAM) with a single cropping size of 400 × 400 
pixels. Table 3 shows the calculation results of Accuracy, 
Precision, and Recall gained by applying machine learning 
using datasets consisting of images acquired with each 
misorientation analysis method. Both the Precision and 
Recall of the prediction results for fatigue images are 1.00 

with each misorientation analysis method, showing that the 
prediction accuracy was 100 %. The highest values were 
achieved for all the indices when intragranular KAM images 
were used. Table 4 shows the confusion matrix when the 
intragranular KAM images were used. Although a few errors 
occurred in distinguishing between creep and creep-fatigue, 
this suggests a possibility that intragranular KAM images 
express damage characteristics the best of the four analysis 
method types considered in this study.

Then, we observed the results gained with the other EBSD 
analysis methods in detail. First, when GROD images were 
used, the Recall of creep was as high as 1.00 but that of 
creep-fatigue was as low as 0.042. This means that most of 
the creep and creep-fatigue images were predicted as creep. 
In other words, creep and creep-fatigue were barely 
differentiated. When KAM images were used, the Recall of 
creep was below 0.5. That is, more than half of the creep 
images were predicted to be creep-fatigue, indicating that 
creep and creep-fatigue were barely differentiated.

Comparison of the results of KAM images, grain boundary 
KAM images, and intragranular KAM images show that the 
prediction accuracy of every index is the highest with 
intragranular KAM, followed by grain boundary KAM and 
then KAM. Since a grain boundary KAM image and an 
intragranular KAM image are extracted from specific areas 
of a regular KAM image, the regular KAM image contains 
more misorientation information than these two types of 
images. Nevertheless, the accuracy was higher when grain 
boundary KAM or intragranular KAM was used. This is 
probably because materials science information such as 
grain boundary or intragranular were added to simple 
coordinate information of pixels with misorientation.
3.2 Influence of the cropping sizes
Next, we compared differences in the prediction accuracy 
between each cropping size. We applied machine learning 
using datasets of 400 × 400 pixels, 200 × 200 pixels, and 
100 × 100 pixels with the intragranular KAM EBSD 
misorientation analysis method, which showed the highest 
accuracy in the results in Section 3.1. Table 5 shows the 
calculation results of the Accuracy, Precision, and Recall of 
each model. The analysis results of 400 × 400 pixels are the 

Table 3   Differences in prediction accuracy according to misorientation analysis methods

Misorientation 
analysis method

Accuracy
Precision Recall

Average 
value

Creep
Creep-
fatigue

Fatigue
Average 

value
Creep

Creep-
fatigue

Fatigue

GROD 0.681 0.837 0.511 1.00 1.00 0.681 1.00 0.042 1.00

KAM 0.731 0.740 0.646 0.573 1.00 0.731 0.431 0.764 1.00

Grain boundary KAM 0.796 0.797 0.712 0.679 1.00 0.796 0.653 0.736 1.00

Intragranular KAM 0.889 0.907 0.962 0.761 1.00 0.889 0.694 0.972 1.00

Table 4   Confusion matrix with intragranular KAM images 
     (400 × 400 pixels) 

Unit
Predicted label

Creep
Creep-
fatigue

Fatigue

Actual label

Creep Piece 50 22 0

Creep-fatigue Piece 2 70 0

Fatigue Piece 0 0 72
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same as those in Tables 3 and 4. Both the Precision and 
Recall of the prediction results using fatigue images are 1.00 
with each cropping size, indicating a prediction accuracy of 
100 %. However, regarding the classification of creep and 
creep-fatigue, the highest accuracy was achieved when 
images of 400 × 400 pixels were used, and the accuracy 
dropped as the cropping size became smaller. A possible 
reason for the degradation of prediction accuracy, despite an 
increase in the number of image data by five or 25 times, is 
a decrease in the amount of information per image. Figure 2 
shows typical examples of intragranular KAM images after 
cropping. The number of crystal grains in each visual field 
significantly varies. Specifically, 400 × 400 pixels, 200 × 
200 pixels, and 100 × 100 pixels images contain approximately 
150, 40, and 10 grains, respectively. If damage characteristics 
captured in EBSD images are macroscopic, spanning dozens 
of crystal grains, it becomes more difficult to identify their 
entire picture as the cropping size decreases. This probably 
lowers the prediction accuracy of the model. In contrast, if 
damage characteristics are concentrated in certain areas, the 
probability of including those areas in visual fields drops as 
the cropping size decreases. As a result, a dataset where 
labels are even given to visual fields with small damage 
influence is used for training and test. This probably lowers 
the prediction accuracy. In any case, the result of this 
consideration shows that the number of image data cannot 
be increased by reducing the cropping size indefinitely. The 
most effective method to improve accuracy by increasing the 
number of image data is likely to acquire additional EBSD 
images.
3.3 Considerations toward practical application
This section summarizes the model that showed the highest 
accuracy in the above comparison. The prediction model 
created by using the dataset generated by cropping 
intragranular KAM images to 400 × 400 pixels showed the 
highest accuracy under the conditions considered in this 
study. Table 4 shows the confusion matrix of the prediction 
results. Fatigue was predicted with an accuracy of 100 % 
while Accuracy limited to creep and creep-fatigue was 

approximately 0.8.
As described above, the method considered in this study 

showed the potential to determine damage patterns with high 
accuracy but does not provide determination with an 
accuracy of 100 %. To actually leverage this method for 
maintenance or damage investigation, consideration of how 
to use machine learning models, such as the required 
accuracy and how to guarantee the validity of prediction 
results, is required in addition to accuracy improvement and 
other technical considerations. In addition, discussions on 
the acquisition method and quality of data input in the 
machine learning model are necessary, including how to 
obtain test specimens from actual structures (positions and 
procedure), how to acquire EBSD images from obtained test 
specimens, and permissible variations in acquired images.
3.4 Focus area analysis using Grad-CAM
Lastly, we analyzed the focus areas in the intragranular KAM 
prediction model with a cropping size of 400 × 400 pixels, 
which showed the highest accuracy in the above comparison, 
using Grad-CAM. Figure 3 shows the focus area analysis 
results of creep, creep-fatigue, and fatigue. In Fig. 3, areas 
closer to red are more focused, whereas those closer to blue 
are less focused. These are the analysis results of correctly 
classified images. Figure 3 shows that bright crystal grains 
in intragranular KAM images, that is, those with large 
misorientation in the grains, are the main focus areas. The 
fact that focus areas are located in local areas rather than 
whole images suggests that the damage pattern may be 
classified based on the shape of the misorientation 
distribution occurred in grains as the characteristic, rather 
than the macroscopic misorientation distribution. Observing 
focus areas in more detail is expected to lead to the 
clarification of the damage mechanism in the future.

In addition, the size of individual focus areas is equivalent 
to one to several crystal grains and one image contains few 
focus areas. This suggests that the prediction accuracy 
dropped when the cropping size decreased because the 
probability that visual fields contain areas with remarkable 
damage characteristics lowered.

400 × 400 pixels 100 × 100 pixels200 × 200 pixels

(Note) The contrast in these images has been adjusted prioritizing visibility.

Fig. 2   Differences in intragranular KAM images according to cropping sizes

Table 5   Differences in prediction accuracy according to cropping sizes

Cropping size
Number of image 

data for test
Accuracy

Precision Recall

Average 
value

Creep
Creep-
fatigue

Fatigue
Average 

value
Creep

Creep-
fatigue

Fatigue

400 × 400 pixels 72 0.889 0.907 0.962 0.761 1.00 0.889 0.694 0.972 1.00

200 × 200 pixels 392 0.753 0.753 0.637 0.622 1.00 0.753 0.599 0.658 1.00

100 × 100 pixels 1 800 0.738 0.739 0.596 0.620 1.00 0.738 0.663 0.551 1.00
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4. Conclusion

We applied machine learning using the EBSD images of Ti 
alloy with the aim of identifying damage patterns that are 
difficult to determine by human eye. Different types of 
damage (creep, creep-fatigue, and fatigue) were applied to 
test specimens at room temperature with equivalent strain 
amounts, and then EBSD images were acquired.

We compared four EBSD misorientation analysis methods 
(GROD, KAM, grain boundary KAM, and intragranular 
KAM), and three image cropping sizes (400 × 400 pixels, 
200 × 200 pixels, and 100 × 100 pixels) in data augmentation 
processing to investigate the influence of these conditions on 
prediction accuracy. We also analyzed focus areas for 
machine learning using Grad-CAM and observed what 
characteristic was focused on in EBSD images during 
estimation. The conclusion of this study is as follows.

(1) The model created by selecting 400 × 400 pixels as 
the cropping size and intragranular KAM as the 
misorientation analysis method has the highest accuracy 
among the analysis conditions considered in this study.

(2) Reducing the cropping size lowers the probability 
that visual fields contain areas with remarkable damage 
characteristics, which leads to a lower prediction 
accuracy. This means that the number of image data 
cannot be increased indefinitely by reducing the 
cropping size.

(3) The method considered in this study shows the 
potential of determining damage patterns with high 
accuracy. However, this method does not provide a 
determination accuracy of 100 %. To put this method 
into practical application, it is necessary to not only 
improve the accuracy of the model itself but also figure 
out how to use the machine learning model and discuss 
the acquisition method and quality of input data.

(4) Focus area analysis using Grad-CAM shows that 
there is a possibility that the shape of misorientation 
distribution that occurs in crystal grains is used as the 

characteristic to classify damage patterns. Observing 
focus areas in detail is expected to lead to the 
clarification of the damage mechanism in the future.

We will contribute to society in terms of maintenance and 
disaster control by improving the accuracy of this technology 
to realize a generalized damage cause estimation that does 
not rely on the knowledge and experience of evaluator.
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Fig. 3   Results of focus area analysis using Grad-CAM


