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In the automation of visual inspection in the manufacturing industry, the difficulty of collecting defective 
product data has been a significant challenge. Recently, the use of synthetic data, which involves the artificial 
generation of images of defective products, has gained attention as a method to ensure a sufficient volume of data. 
In this study, synthetic data simulating defective metal components was generated using multiple approaches, 
including image processing and optical simulation. Furthermore, the usefulness of synthetic data as training data 
was verified by constructing an AI inspection model trained exclusively on synthetic data.

1.	 Introduction

Automating the visual inspection of industrial products 
remains a challenge throughout the manufacturing industry, 
and its realization is highly anticipated. Attempts to solve 
this issue by using cameras and developing image recognition 
AI models are becoming increasingly prevalent. However, 
collecting images of defective products for training and 
validation poses difficulties due to the low defect occurrence 
rate and the inability to cover all defect patterns. Although 
methods exist to build inspection models using only images 
of non-defective products, they tend to produce a high false 
positive rate. As a result, operating procedures require 
frequent double-checking by human inspectors, and often, 
the costs outweigh the benefits of AI implementation.

Researchers are increasingly turning to artificially 
generated image data as one potential solution. This data is 
created through computation instead of relying on actual 
defective product images and is used to train and validate AI 
models. Artificially generated image data, known as 
synthetic data, has already been utilized in the automotive 
industry to simulate road scenarios for training and validating 
autonomous driving algorithms. Similarly, in the manufacturing 
industry, there are growing expectations that the automation 
of visual inspection will be achieved by utilizing synthetic 
data that simulates images of defective products. Several 
services now offer generative algorithms for this purpose.

International standards have also begun to reference 
synthetic data. For example, ASTM E3327(1), a guideline for 
building semi-automated defect detection models using 
digital-radiographic testing (D-RT) images in non-destructive 
inspection, recommends using synthetic data in addition to 
real data. This is due to the practical difficulty of covering all 

defect patterns in actual manufacturing processes.
The cost of creating synthetic data for defective product 

images varies significantly depending on the inspection 
target and inspection method (photography method). Current 
generation methods fall into three categories: image 
processing, optical simulation (3D-CG), and generative AI. 
This paper introduces each generation method, including 
specific examples IHI has explored, and presents the 
evaluation results of synthetic data as training data.

2.	 Generation method by image processing

The least expensive method of generating synthetic data of 
defective products is to edit and process regions within 
images of non-defective products to have simulated defective 
regions. In many cases, simulated defective regions are 
created by cropping sections from real defective product 
images or by using image editing software. However, this 
generation method works well only when the imaging targets 
and conditions are simple. Specific examples include 
inspection images captured by scanning wall surfaces or 
pipe interiors with a camera, or images obtained through 
non-destructive inspection techniques such as ultrasonic, 
infrared, or X-ray. These methods handle flat, two-
dimensional images without depth, enabling low-cost 
generation of high-quality synthetic defect data through 
image processing alone.

Figure 1 shows an example of generating synthetic data by 
applying image processing to a photo of a defect-free inner 
surface of a cylindrical metal pipe mock-up and adding 
simulated local wall thinning defect caused by corrosion. 
This example took advantage of the fact that the shape of 
corrosion-induced thinning can be approximated using a 
cellular automaton and the program was used to simulate the 
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shadow cast by the thinned part when lit by editing pixel 
values.

3.	 Generation method by optical simulation

In many cases, generating plausible synthetic defect data 
using only image processing proves difficult in practice. 
Such difficulties typically arise when inspection targets have 
complex 3D shapes, the lighting configuration is complicated, 
or the target surface exhibits anisotropic optical properties. 
Since generating this type of synthetic data requires physical 
simulation of light rays entering the camera, the process 
typically uses 3D-CG or a method known as physically 
based rendering(2). For example, in the field of visual 
question answering (VQA) which focuses on generating 
captions based on input images, the CLEVR(3) project 
releases a dataset composed entirely of synthetic data 
generated using 3D-CG.
3.1	 Example of defect introduction on simulated 

blade
Assuming a simulated blade as the inspection target, we 
present a method for generating synthetic data by rendering 
3D-CG images that simulate photographic images, along 
with examples of the output. A 3D-CAD model with local 
surface indentations was used to represent defects. Three 
types of defects were assumed having a depth of approximately 
50 μm: a dent in the form of indentation, a scratch resembling 
an elongated gouge, and a nick in the form of a small chip or 
notch. Figure 2 shows a shooting scene created in virtual 
space using Blender Ver. 4.0, where a 3D model of a simulated 
blade was created, and cameras and lights were arranged. 

Since the objective was to detect indentations, we simulated 
the defects by displacing each vertex of the inspection target 
model’s mesh from its original position.

Because the photometric stereo method(4) was adopted as 
the imaging technique, multiple light sources were arranged 
with different illumination directions. The photometric 
stereo method can estimate an object’s surface normal by 
analyzing a set of images captured for each illumination 
pattern and output the result as a normal map. Height maps 
and curvature maps can also be calculated from a normal 
map, making it a commonly used imaging technique for 
emphasizing local surface irregularities on inspection 
targets.

When using 3D-CG to approximate real photographic 
images, it is crucial to reproduce the real surface’s optical 
properties (physical properties such as reflection, scattering, 
transmission, and absorption) with high fidelity. As will be 
discussed in Section  3.2, measuring these surface optical 
properties generally incurs significant cost. However, since 
the normal map in the photometric stereo method focuses on 
the object’s shape, it can provide the advantage of obtaining 
results similar to real photographic images, even without 
fully replicating surface optical properties.

Figure 3 shows an example of synthetic data (normal map) 
and indentation areas generated by 3D-CG. Since this is a 
normal map, the image’s RGB values correspond to the x, y, 
and z components of the object’s surface normal. In visual 
inspection, pass/fail decisions for surface irregularities are 
often based not only on their areal extent across the surface, 
but also on their maximum depth or height relative to the 
surface. 3D-CG allows us to control defect characteristics by 
treating these numerical values as hyperparameters. By 
randomly varying the defects’ shape, area, and maximum 
depth, we created a synthetic dataset with diverse defect 
patterns. Figure 4 shows examples of cropped patch images 
(200 × 200 pixels) from the synthetic dataset we generated. 
For reference, the right side of Fig. 4 shows images of non-
defective inspection samples to which artificial defects were 
applied, simulating actual defect shapes found in the process.
3.2	 Methods of acquiring and defining surface 

optical properties
Section 3.1 demonstrated how the photometric stereo method 
enabled synthetic image generation that resembled real 
images, even without faithfully replicating surface optical 

Camera Lights × 8 Simulated blade

Fig. 2   Configuration of the shooting scene arranged in a virtual  
             space	
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Fig. 3   Synthetic data (normal map) generated by 3D-CG

Defect-free image Ground truth label image Synthetic data

Fig. 1   Example of adding defect annotations to images of non- 
            defective products	
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properties. However, few real-world inspections involving 
imaging techniques such as pattern projection and 
multispectral cameras allow the surface’s optical properties 
to be disregarded. To faithfully reproduce images obtained 
by photography methods other than the photometric stereo 
method and utilize synthetic data, the process must define 
the target’s surface optical properties. The following section 
introduces several methods of acquiring and defining those 
properties.
3.2.1	 Definition via shader parameter adjustment
3D-CG software provides several shaders, which are 
mathematical procedures describing how light interacts with 
object surfaces. Users can define optical properties by 
adjusting parameters such as reflectance and surface 
roughness. The relevant shader in Blender, as used in this 
study, is the Principled BSDF(5). Typically, designers manually 
fine-tune parameters within the software to replicate real-
world appearances, but this process is time-consuming and 
requires expertise. To address this issue, one possible 
approach is to use real photographs taken under various 
imaging conditions as reference targets. The shader 
parameters of 3D-CG rendered images generated under the 
same conditions are then optimized to minimize errors based 
on arbitrary evaluation metrics.

Here we introduce an example applying this setting method 
to a black-painted bent metal plate. Figure  5 shows a 
schematic representation of the photography scene setup. A 

similar imaging setup was reproduced in the 3D-CG 
environment, and the shader parameters were adjusted 
through optimization calculation to maximize the similarity 
between the rendered image and the real photographic 
image. Figure  6 shows a comparison between a rendered 
image after optimization and a real photographic image. 
When the surface texture or geometry of the inspection 
target makes obtaining optical properties difficult, a 
simplified parameter adjustment method like this allows 
simulation of those optical properties.
3.2.2	 Definition via texture images
Material images known as physically based rendering (PBR) 
textures, which reflect surface optical properties, can be 
applied to the shader parameters described in Subsection 3.2.1. 
Applying texture images enables the reproduction of surface 
patterns and fine surface irregularities corresponding to 
roughness levels, resulting in more realistic rendering. 
Typical examples include albedo maps for color, normal 
maps or bump maps for micro surface irregularities, and 
roughness maps for surface roughness.

Acquiring PBR textures generally requires a studio setup to 
photograph parts of an actual inspection object’s flat surface 
from multiple lighting directions; fortunately, various 
commercial services offer this type of photography. Figure 7 
shows the texture images generated for a metallic roughness 
test piece (Ra = 1.6 μm). Figure 8 shows the rendered 3D-CG 
appearance after applying the texture images to a rectangular 
solid surface, where linear roughness is visibly represented.

Ring light

Camera

Imaging target

Fig. 5   Schematic representation of the photography scene setup  
           for a black-painted metal plate	

(a)  Synthetic data generated
      by 3D-CG

(b)  Actual photographic image

Fig. 6   Captured images of a black-painted metal plate

Actual images of artificial defects

Dent type

Scratch type

Nick type

Synthetic dataDefect shape

Fig. 4   Comparative example of synthetic data and real defect images
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3.2.3	 Definition via BRDF measurement results
A method that results in more accurate reproduction of light 
reflection in 3D-CG is bidirectional reflectance distribution 
function (BRDF)(6), which quantitatively measures surface 
reflectance relative to the directions of incident light and 
observed light on the object surface. Figure  9 shows a 
schematic representation of BRDF measurement and 
example results at fixed incident angles of 5°, 25°, 60°, and 
70°. A continuous function model derived from discrete 
BRDF measurements is applied to the simulated inspection 
surface. This method ensures high fidelity, as it is based on 
actual optical property measurements of the inspection target. 
However, it requires specialized measurement equipment 
and optical simulation software, resulting in high cost.

3.2.4	 Comparative evaluation of surface optical 
property definition methods

We used Speos (ANSYS, USA), an optical simulation software 
capable of applying BRDF measurement results to models, 
to conduct a comparative evaluation between the texture 
image method introduced in Subsection  3.2.2 and the  
BRDF measurement method introduced in Subsection 3.2.3. 
Figure 10 shows a schematic representation of the configuration 
in Speos, and Fig. 11 presents rendered images of flat test 
specimens whose surface optical properties have been 
defined by each method. Figure  10 illustrates that the 
simulation can reproduce actual imaging environments using 
lens design data and Illuminating Engineering Society (IES) 
data. It is also possible to define both texture and BRDF 
properties simultaneously. This was done with the expectation 
that their combination would enable the reproduction of fine 
surface irregularities observed on real surfaces with similar 
reflectance characteristics.

The evaluation used structural similarity index (SSIM)(7), a 
common indicator of image similarity, as the similarity 
metric. SSIM values of the real and generated images appear 
below each image in Fig. 11. The simulation image generated 

Fig. 8   Example of applying the surface texture of roughness test  
           pieces to a cube	

(a)  Schematic representation
      of BRDF measurement

(b)  Example measurement results
      (conoscopic map)
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Fig. 9   Schematic representation of BRDF measurement and  
               example results	

Lens design data IES data BRDF data*1

OMS4

Texture data

Light-receiving surface

Light

Inspection target

Emitted ray

Base
color

Normal

Metal

Roughness

30°

60°

90°

−30°

−60°

−90°

(cd)

(cd)

(cd)

(cd)

(cd)

(Note) *1 : From the website of Cybernet Systems Co., Ltd.
   (https://www.cybernet.co.jp/optservice/service/osm_service.html)

Fig. 10   Schematic representation of configuration in Speos
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Fig. 7   Example of created PBR texture images
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using only BRDF data showed a higher similarity score than 
the image using only texture data, confirming more accurate 
reproduction of surface reflectance characteristics through 
BRDF-based settings. The image applying only BRDF 
measurement results (second column from the left in Fig. 11) 
shows slightly higher similarity than the image applying 
both BRDF measurement results and texture images (fourth 
column from the left in Fig. 11). This difference might have 
been caused by a misalignment between the surface when it 
was scanned for the texture image and the real image’s 
captured area. SSIM, an evaluation indicator, comprises 
comparison terms for luminance, contrast, and structure to 
calculate evaluation values for each local region, then 
averages those scores. Therefore, misalignment of minute 
surface irregularities may lower the scores in each region, 
potentially causing the overall image evaluation value to be 
lower than the perceived visual similarity. The evaluation 
revealed that establishing an appropriate metric for accurately 
assessing generated images remains an issue.

4.	 Generation method using generative AI 
(diffusion models)

When there is a need to generate complex synthetic defect 
data that is difficult to model with 3D-CG, fine-tuning of 
diffusion models(8), commonly referred to as image-
generating AI, can potentially generate such data.

Figure 12 shows an example of synthetic normal map data 
generated by a diffusion model, using photometric stereo 
photography of local surface indentations such as nicks and 
scratches. The fine-tuning process applied a method called 
DreamBooth(10) to the Stable Diffusion v1.4(9) model, using 
20 real defect images as training data. It should be noted 
that, since this method does not necessarily generate 
synthetic data representing actual defects, each output must 
be visually classified by a domain expert who can determine 
whether it is a defect or not, resulting in annotation costs. 
Also, the generation method’s theoretical basis involves 
probabilistic processes, so controlling defect characteristics 
as precisely as in 3D-CG is not feasible. Though there are 
several points to note when using this method, this method is 
a promising option for synthetic data generation, as the 
underlying technology is advancing rapidly.

5.	 Evaluation of synthetic data effectiveness

To verify the effectiveness of synthetic data created with 3D-
CG, we evaluated the detection rate when an image 
recognition AI (deep learning model) trained solely on 
synthetic data was used to perform inference on actual defect 
images as test data. For simplification, the deep learning 
model used MobileNetV2(11), a simple image classification 
model. The model was trained using 200 × 200 pixels patch 
images cropped from the synthetic data, as shown in Fig. 4. 
The task was framed as a binary classification problem to 
distinguish between OK (non-defective) and NG (defective) 
patches.

Table  1 shows a confusion matrix that summarizes the 
relationship between the test data predictions and their 
ground truth classes. The true positive rate (TPR), calculated 
as TP/(TP + FN), was 89.6%. The false positive rate (FPR), 
calculated as FP/(FP  + TN), was 12.2%. The Precision, 
calculated as TP/(TP + FP), was 13.0%, resulting in a high 
false detection rate of 87.0%. However, these performance 
values have room for improvement because inspection 
models typically employ more complex network models and 
incorporate real captured data during training.

Optical property defining data

SSIM with real image

Images

Image type

—

—

Real image

BRDF only

Rendered images

Texture only BRDF and texture

79.61% 71.06% 78.76%

Fig. 11   Verification results of surface optics reproduction method using flat test specimens

Fig. 12   Defects in synthetic data (normal map) generated by a  
               diffusion model	
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Also, the maximum depth of the introduced indentation 
defects was used to classify defect severity, and index 
numbers were assigned in order of depth. Figure 13 shows 
the TPR for each index number, revealing that missed 
detections occurred primarily with defects of shallower 
maximum depth. Since the inspection target is defined to 
treat defects with a maximum depth of index number 4 or 
higher as actual defects, the prepared test data achieved a 
100% detection rate, confirming the effectiveness of 3D-CG 
generated synthetic data as training data for inspection 
models.

While this evaluation focused on assessing the usefulness 
of synthetic data as training material, evaluation metrics for 
synthetic data are still under development, with various 
indicators being proposed. For example, methods to assess 
the statistical similarity between synthetic and real images 
include: Frechet inception distance (FID)(12), which evaluates 
differences in feature distributions; inspection score (IS)(13) 
for evaluating synthetic data diversity; and SSIM adopted in 
Subsection  3.2.4, for evaluating structural similarity. 
Furthermore, methods like train on synthetic, test on real 
(TSTR) and train on real, test on synthetic (TRTS)(14) are 
available for evaluating data discriminability. The evaluation 
adopted in this study corresponds to the TSTR approach.

Since no standardized evaluation metrics for synthetic data 
have been established, appropriate metrics must be selected 
based on the characteristics of the data and the purpose of 
the evaluation.

6.	 Conclusion

This paper has presented three specific synthetic data 
generation techniques — image processing, optical simulation 
(3D-CG), and generative AI — for use in automating visual 
inspection with AI-based models. For optical simulation in 
particular, the evaluation of synthetic data was conducted by 
constructing an inspection classification model trained 
exclusively on synthetic data and performing inference on 
unseen real images. The model successfully classified non-
defective and defective products with a TPR of 89.6% and an 
FPR of 12.2%, confirming the validity of synthetic data for 
training purposes.

Other potential applications include using synthetic data 
for validation or as source data for transfer learning in 
inspection models. Future applications of synthetic data 
include validating performance and ensuring the quality of 
visual inspection AI models implemented in production 
lines. These efforts also involve examining evaluation 
metrics for inspection images. Planned activities also include 
developing engineering tools for optical system design to 
support the introduction of new visual inspection equipment.

REFERENCES

(1)	 ASTM E3327/E3327M-21 : Standard Guide for the 
Qualification and Control of the Assisted Defect 
Recognition of Digital Radiographic Test Data, 2021

(2)	 B. Burley : Physically Based Shading at Disney, 
ACM SIGGRAPH, 2012, pp. 1-7

(3)	 J. Johnson, B. Hariharan, L. Maaten, F. Li, L. Zitnick 
and R. Girshick : CLEVR: A Diagnostic Dataset for 
Compositional Language and Elementary Visual 
Reasoning, Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 
2017

(4)	 H. Imoto, K. Machida, Y. Yamaura, H. Tadenuma, 
and T. Maekawa : Development of Microscopic Shape 
Measuring System Using Iterative Photometric Stereo 
Techniques, Transactions of the Japan Society of 
Mechanical Engineers, Vol.  82, No.  835, 2016 (in 
Japanese)

(5)	 B. Burley : Extending the Disney BRDF to a BSDF 
with Integrated Subsurface Scattering, ACM SIGGRAPH, 
2015

(6)	 C. Schlick : An Inexpensive BRDF Model for 
Physically-based Rendering, Computer Graphics Forum, 
Vol. 13, No. 3, 1994

(7)	 Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. 
Simoncelli : Image Quality Assessment: From Error 
Visibility to Structural Similarity, IEEE Transactions 
on Image Processing, Vol. 13, Iss. 4, 2004, pp. 600-612

(8)	 R. Rombach, A. Blattmann, D. Lorenz, P. Esser and 
B. Ommer : High-resolution Image Synthesis with 
Latent Diffusion Models, Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2022, pp. 10,684-10,695

(9)	 Stability AI : < https://huggingface.co/CompVis/stable-

2 3 5

Shallow Deep
Classification of index numbers based

on the maximum depth of defects

T
P

R
  (

%
)

1 4 6 7
0

20

40

60

80

100

Index numbers
identified as
defective

Fig. 13   Detection rate calculated for each maximum depth of 
               defects	

Table 1   Confusion matrix of synthetic data-based model  
	     predictions	
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https://huggingface.co/CompVis/stable-diffusion-v1-4
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