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In the automation of visual inspection in the manufacturing industry, the difficulty of collecting defective
product data has been a significant challenge. Recently, the use of synthetic data, which involves the artificial
generation of images of defective products, has gained attention as a method to ensure a sufficient volume of data.
In this study, synthetic data simulating defective metal components was generated using multiple approaches,
including image processing and optical simulation. Furthermore, the usefulness of synthetic data as training data
was verified by constructing an Al inspection model trained exclusively on synthetic data.

1. Introduction

Automating the visual inspection of industrial products
remains a challenge throughout the manufacturing industry,
and its realization is highly anticipated. Attempts to solve
this issue by using cameras and developing image recognition
Al models are becoming increasingly prevalent. However,
collecting images of defective products for training and
validation poses difficulties due to the low defect occurrence
rate and the inability to cover all defect patterns. Although
methods exist to build inspection models using only images
of non-defective products, they tend to produce a high false
positive rate. As a result, operating procedures require
frequent double-checking by human inspectors, and often,
the costs outweigh the benefits of Al implementation.
Researchers are increasingly turning to artificially
generated image data as one potential solution. This data is
created through computation instead of relying on actual
defective product images and is used to train and validate Al
models. Artificially generated image data, known as
synthetic data, has already been utilized in the automotive
industry to simulate road scenarios for training and validating
autonomous driving algorithms. Similarly, in the manufacturing
industry, there are growing expectations that the automation
of visual inspection will be achieved by utilizing synthetic
data that simulates images of defective products. Several
services now offer generative algorithms for this purpose.
International standards have also begun to reference
synthetic data. For example, ASTM E3327(, a guideline for
building semi-automated defect detection models using
digital-radiographic testing (D-RT) images in non-destructive
inspection, recommends using synthetic data in addition to
real data. This is due to the practical difficulty of covering all

defect patterns in actual manufacturing processes.

The cost of creating synthetic data for defective product
images varies significantly depending on the inspection
target and inspection method (photography method). Current
generation methods fall into three categories: image
processing, optical simulation (3D-CG), and generative Al.
This paper introduces each generation method, including
specific examples IHI has explored, and presents the
evaluation results of synthetic data as training data.

2. Generation method by image processing

The least expensive method of generating synthetic data of
defective products is to edit and process regions within
images of non-defective products to have simulated defective
regions. In many cases, simulated defective regions are
created by cropping sections from real defective product
images or by using image editing software. However, this
generation method works well only when the imaging targets
and conditions are simple. Specific examples include
inspection images captured by scanning wall surfaces or
pipe interiors with a camera, or images obtained through
non-destructive inspection techniques such as ultrasonic,
infrared, or X-ray. These methods handle flat, two-
dimensional images without depth, enabling low-cost
generation of high-quality synthetic defect data through
image processing alone.

Figure 1 shows an example of generating synthetic data by
applying image processing to a photo of a defect-free inner
surface of a cylindrical metal pipe mock-up and adding
simulated local wall thinning defect caused by corrosion.
This example took advantage of the fact that the shape of
corrosion-induced thinning can be approximated using a
cellular automaton and the program was used to simulate the
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Fig.1 Example of adding defect annotations to images of non-
defective products

shadow cast by the thinned part when lit by editing pixel
values.

3. Generation method by optical simulation

In many cases, generating plausible synthetic defect data
using only image processing proves difficult in practice.
Such difficulties typically arise when inspection targets have
complex 3D shapes, the lighting configuration is complicated,
or the target surface exhibits anisotropic optical properties.
Since generating this type of synthetic data requires physical
simulation of light rays entering the camera, the process
typically uses 3D-CG or a method known as physically
based rendering®. For example, in the field of visual
question answering (VQA) which focuses on generating
captions based on input images, the CLEVR® project
releases a dataset composed entirely of synthetic data
generated using 3D-CG.

3.1 Example of defect introduction on simulated

blade

Assuming a simulated blade as the inspection target, we
present a method for generating synthetic data by rendering
3D-CG images that simulate photographic images, along
with examples of the output. A 3D-CAD model with local
surface indentations was used to represent defects. Three
types of defects were assumed having a depth of approximately
50 um: a dent in the form of indentation, a scratch resembling
an elongated gouge, and a nick in the form of a small chip or
notch. Figure 2 shows a shooting scene created in virtual
space using Blender Ver. 4.0, where a 3D model of a simulated
blade was created, and cameras and lights were arranged.

Simulated blade

Camera Lights x 8

Fig.2 Configuration of the shooting scene arranged in a virtual
space

Since the objective was to detect indentations, we simulated
the defects by displacing each vertex of the inspection target
model’s mesh from its original position.

Because the photometric stereo method® was adopted as
the imaging technique, multiple light sources were arranged
with different illumination directions. The photometric
stereo method can estimate an object’s surface normal by
analyzing a set of images captured for each illumination
pattern and output the result as a normal map. Height maps
and curvature maps can also be calculated from a normal
map, making it a commonly used imaging technique for
emphasizing local surface irregularities on inspection
targets.

When using 3D-CG to approximate real photographic
images, it is crucial to reproduce the real surface’s optical
properties (physical properties such as reflection, scattering,
transmission, and absorption) with high fidelity. As will be
discussed in Section 3.2, measuring these surface optical
properties generally incurs significant cost. However, since
the normal map in the photometric stereo method focuses on
the object’s shape, it can provide the advantage of obtaining
results similar to real photographic images, even without
fully replicating surface optical properties.

Figure 3 shows an example of synthetic data (normal map)
and indentation areas generated by 3D-CG. Since this is a
normal map, the image’s RGB values correspond to the x, y,
and z components of the object’s surface normal. In visual
inspection, pass/fail decisions for surface irregularities are
often based not only on their areal extent across the surface,
but also on their maximum depth or height relative to the
surface. 3D-CG allows us to control defect characteristics by
treating these numerical values as hyperparameters. By
randomly varying the defects’ shape, area, and maximum
depth, we created a synthetic dataset with diverse defect
patterns. Figure 4 shows examples of cropped patch images
(200 x 200 pixels) from the synthetic dataset we generated.
For reference, the right side of Fig. 4 shows images of non-
defective inspection samples to which artificial defects were
applied, simulating actual defect shapes found in the process.
3.2 Methods of acquiring and defining surface

optical properties
Section 3.1 demonstrated how the photometric stereo method
enabled synthetic image generation that resembled real
images, even without faithfully replicating surface optical

des
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Fig.3 Synthetic data (normal map) generated by 3D-CG
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Fig. 4 Comparative example of synthetic data and real defect images

properties. However, few real-world inspections involving
imaging techniques such as pattern projection and
multispectral cameras allow the surface’s optical properties
to be disregarded. To faithfully reproduce images obtained
by photography methods other than the photometric stereo
method and utilize synthetic data, the process must define
the target’s surface optical properties. The following section
introduces several methods of acquiring and defining those
properties.
3.2.1 Definition via shader parameter adjustment
3D-CG software provides several shaders, which are
mathematical procedures describing how light interacts with
object surfaces. Users can define optical properties by
adjusting parameters such as reflectance and surface
roughness. The relevant shader in Blender, as used in this
study, is the Principled BSDF®. Typically, designers manually
fine-tune parameters within the software to replicate real-
world appearances, but this process is time-consuming and
requires expertise. To address this issue, one possible
approach is to use real photographs taken under various
imaging conditions as reference targets. The shader
parameters of 3D-CG rendered images generated under the
same conditions are then optimized to minimize errors based
on arbitrary evaluation metrics.

Here we introduce an example applying this setting method
to a black-painted bent metal plate. Figure 5 shows a
schematic representation of the photography scene setup. A

Ring light

Imaging target

Fig.5 Schematic representation of the photography scene setup
for a black-painted metal plate

similar imaging setup was reproduced in the 3D-CG
environment, and the shader parameters were adjusted
through optimization calculation to maximize the similarity
between the rendered image and the real photographic
image. Figure 6 shows a comparison between a rendered
image after optimization and a real photographic image.
When the surface texture or geometry of the inspection
target makes obtaining optical properties difficult, a
simplified parameter adjustment method like this allows
simulation of those optical properties.

3.2.2 Definition via texture images

Material images known as physically based rendering (PBR)
textures, which reflect surface optical properties, can be
applied to the shader parameters described in Subsection 3.2.1.
Applying texture images enables the reproduction of surface
patterns and fine surface irregularities corresponding to
roughness levels, resulting in more realistic rendering.
Typical examples include albedo maps for color, normal
maps or bump maps for micro surface irregularities, and
roughness maps for surface roughness.

Acquiring PBR textures generally requires a studio setup to
photograph parts of an actual inspection object’s flat surface
from multiple lighting directions; fortunately, various
commercial services offer this type of photography. Figure 7
shows the texture images generated for a metallic roughness
test piece (Ra = 1.6 um). Figure 8 shows the rendered 3D-CG
appearance after applying the texture images to a rectangular
solid surface, where linear roughness is visibly represented.

(a) Synthetic data generated
by 3D-CG

(b) Actual photographic image

Fig. 6 Captured images of a black-painted metal plate
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(a) Albedo map

(b) Normal map (¢) Roughness map

Fig.7 Example of created PBR texture images

Fig.8 Example of applying the surface texture of roughness test
pieces to a cube

3.2.3 Definition via BRDF measurement results

A method that results in more accurate reproduction of light
reflection in 3D-CG is bidirectional reflectance distribution
function (BRDF)©®, which quantitatively measures surface
reflectance relative to the directions of incident light and
observed light on the object surface. Figure 9 shows a
schematic representation of BRDF measurement and
example results at fixed incident angles of 5°, 25°, 60°, and
70°. A continuous function model derived from discrete
BRDF measurements is applied to the simulated inspection
surface. This method ensures high fidelity, as it is based on
actual optical property measurements of the inspection target.
However, it requires specialized measurement equipment
and optical simulation software, resulting in high cost.

IES data

Lens design data

Angle of ’
incidence i

Reflection

(a) Schematic representation
of BRDF measurement

(b) Example measurement results
(conoscopic map)

Fig.9 Schematic representation of BRDF measurement and
example results

3.2.4 Comparative evaluation of surface optical
property definition methods

We used Speos (ANSYS, USA), an optical simulation software
capable of applying BRDF measurement results to models,
to conduct a comparative evaluation between the texture
image method introduced in Subsection 3.2.2 and the
BRDF measurement method introduced in Subsection 3.2.3.
Figure 10 shows a schematic representation of the configuration
in Speos, and Fig. 11 presents rendered images of flat test
specimens whose surface optical properties have been
defined by each method. Figure 10 illustrates that the
simulation can reproduce actual imaging environments using
lens design data and Illuminating Engineering Society (IES)
data. It is also possible to define both texture and BRDF
properties simultaneously. This was done with the expectation
that their combination would enable the reproduction of fine
surface irregularities observed on real surfaces with similar
reflectance characteristics.

The evaluation used structural similarity index (SSIM)\”, a
common indicator of image similarity, as the similarity
metric. SSIM values of the real and generated images appear
below each image in Fig. 11. The simulation image generated

Emitted ray

Roughness

BRDF data™' Texture data

(Note) *1: From the website of Cybernet Systems Co., Ltd.

(https://www.cybernet.co.jp/optservice/service/osm_service.html)

Fig. 10 Schematic representation of configuration in Speos
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Fig. 11 Verification results of surface optics reproduction method using flat test specimens

using only BRDF data showed a higher similarity score than
the image using only texture data, confirming more accurate
reproduction of surface reflectance characteristics through
BRDF-based settings. The image applying only BRDF
measurement results (second column from the left in Fig. 11)
shows slightly higher similarity than the image applying
both BRDF measurement results and texture images (fourth
column from the left in Fig. 11). This difference might have
been caused by a misalignment between the surface when it
was scanned for the texture image and the real image’s
captured area. SSIM, an evaluation indicator, comprises
comparison terms for luminance, contrast, and structure to
calculate evaluation values for each local region, then
averages those scores. Therefore, misalignment of minute
surface irregularities may lower the scores in each region,
potentially causing the overall image evaluation value to be
lower than the perceived visual similarity. The evaluation
revealed that establishing an appropriate metric for accurately
assessing generated images remains an issue.

4. Generation method using generative Al
(diffusion models)

When there is a need to generate complex synthetic defect
data that is difficult to model with 3D-CG, fine-tuning of
diffusion models®, commonly referred to as image-
generating Al, can potentially generate such data.

Figure 12 shows an example of synthetic normal map data
generated by a diffusion model, using photometric stereo
photography of local surface indentations such as nicks and
scratches. The fine-tuning process applied a method called
DreamBooth(!? to the Stable Diffusion v1.4® model, using
20 real defect images as training data. It should be noted
that, since this method does not necessarily generate
synthetic data representing actual defects, each output must
be visually classified by a domain expert who can determine
whether it is a defect or not, resulting in annotation costs.
Also, the generation method’s theoretical basis involves
probabilistic processes, so controlling defect characteristics
as precisely as in 3D-CG is not feasible. Though there are
several points to note when using this method, this method is
a promising option for synthetic data generation, as the
underlying technology is advancing rapidly.

Fig. 12 Defects in synthetic data (normal map) generated by a
diffusion model

5. Evaluation of synthetic data effectiveness

To verify the effectiveness of synthetic data created with 3D-
CG, we evaluated the detection rate when an image
recognition Al (deep learning model) trained solely on
synthetic data was used to perform inference on actual defect
images as test data. For simplification, the deep learning
model used MobileNetV2UD, a simple image classification
model. The model was trained using 200 x 200 pixels patch
images cropped from the synthetic data, as shown in Fig. 4.
The task was framed as a binary classification problem to
distinguish between OK (non-defective) and NG (defective)
patches.

Table 1 shows a confusion matrix that summarizes the
relationship between the test data predictions and their
ground truth classes. The true positive rate (TPR), calculated
as TP/(TP + FN), was 89.6%. The false positive rate (FPR),
calculated as FP/(FP + TN), was 12.2%. The Precision,
calculated as TP/(TP + FP), was 13.0%, resulting in a high
false detection rate of 87.0%. However, these performance
values have room for improvement because inspection
models typically employ more complex network models and
incorporate real captured data during training.
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Table 1 Confusion matrix of synthetic data-based model

predictions
Predicted value
NG (defective) OK (non-defective)
Ground NG (48 images) 43 images (TP) 5 images (FN)
truth value | OK (2,365 images) | 288 images (FP) | 2,077 images (TN)

Also, the maximum depth of the introduced indentation
defects was used to classify defect severity, and index
numbers were assigned in order of depth. Figure 13 shows
the TPR for each index number, revealing that missed
detections occurred primarily with defects of shallower
maximum depth. Since the inspection target is defined to
treat defects with a maximum depth of index number 4 or
higher as actual defects, the prepared test data achieved a
100% detection rate, confirming the effectiveness of 3D-CG
generated synthetic data as training data for inspection
models.

While this evaluation focused on assessing the usefulness
of synthetic data as training material, evaluation metrics for
synthetic data are still under development, with various
indicators being proposed. For example, methods to assess
the statistical similarity between synthetic and real images
include: Frechet inception distance (FID)!'?, which evaluates
differences in feature distributions; inspection score (IS)!®
for evaluating synthetic data diversity; and SSIM adopted in
Subsection 3.2.4, for evaluating structural similarity.
Furthermore, methods like train on synthetic, test on real
(TSTR) and train on real, test on synthetic (TRTS)!* are
available for evaluating data discriminability. The evaluation
adopted in this study corresponds to the TSTR approach.

Since no standardized evaluation metrics for synthetic data
have been established, appropriate metrics must be selected
based on the characteristics of the data and the purpose of
the evaluation.

100
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Classification of index numbers based
on the maximum depth of defects

Fig. 13 Detection rate calculated for each maximum depth of
defects

6. Conclusion

This paper has presented three specific synthetic data
generation techniques — image processing, optical simulation
(3D-CQ), and generative Al — for use in automating visual
inspection with Al-based models. For optical simulation in
particular, the evaluation of synthetic data was conducted by
constructing an inspection classification model trained
exclusively on synthetic data and performing inference on
unseen real images. The model successfully classified non-
defective and defective products with a TPR of 89.6% and an
FPR of 12.2%, confirming the validity of synthetic data for
training purposes.

Other potential applications include using synthetic data
for validation or as source data for transfer learning in
inspection models. Future applications of synthetic data
include validating performance and ensuring the quality of
visual inspection Al models implemented in production
lines. These efforts also involve examining evaluation
metrics for inspection images. Planned activities also include
developing engineering tools for optical system design to
support the introduction of new visual inspection equipment.

REFERENCES

(1) ASTM E3327/E3327M-21 : Standard Guide for the
Qualification and Control of the Assisted Defect
Recognition of Digital Radiographic Test Data, 2021

(2) B. Burley : Physically Based Shading at Disney,
ACM SIGGRAPH, 2012, pp. 1-7

(3) J. Johnson, B. Hariharan, L. Maaten, F. Li, L. Zitnick
and R. Girshick : CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual
Reasoning, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2017

(4) H. Imoto, K. Machida, Y. Yamaura, H. Tadenuma,
and T. Mackawa : Development of Microscopic Shape
Measuring System Using Iterative Photometric Stereo
Techniques, Transactions of the Japan Society of
Mechanical Engineers, Vol. 82, No. 835, 2016 (in
Japanese)

(5) B. Burley : Extending the Disney BRDF to a BSDF
with Integrated Subsurface Scattering, ACM SIGGRAPH,
2015

(6) C. Schlick : An Inexpensive BRDF Model for
Physically-based Rendering, Computer Graphics Forum,
Vol. 13, No. 3, 1994

(7) Z. Wang, A. C. Bovik, H. R. Sheikh and E. P.
Simoncelli : Image Quality Assessment: From Error
Visibility to Structural Similarity, IEEE Transactions
on Image Processing, Vol. 13, Iss. 4, 2004, pp. 600-612

(8) R. Rombach, A. Blattmann, D. Lorenz, P. Esser and
B. Ommer : High-resolution Image Synthesis with
Latent Diffusion Models, Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 10,684-10,695

(9) Stability Al : <https://huggingface.co/Comp Vis/stable-

IHI Engineering Review Vol. 58 No. 2 2025


https://huggingface.co/CompVis/stable-diffusion-v1-4

diffusion-v1-4 >, accessed 2022-08-20

(10) N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein
and K. Aberman : DreamBooth: Fine Tuning Text-to-
Image Diffusion Models for Subject-Driven Generation,
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023, pp. 22,500-
22,510

(11) M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and
L. Chen : Mobilenetv2: Inverted Residuals and Linear
Bottlenecks, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2018, pp. 4,510-4,520

(12) M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler

and S. Hochreiter : GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium,
Advances in Neural Information Processing Systems
30 (NIPS 2017), 2017

(13) T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford and X. Chen : Improved Techniques for
Training GANs, Advances in Neural Information
Processing Systems 29 (NIPS 2016), 2016

(14) L. Xu, M. Skoularidou, A. Cuesta-Infante and K.
Veeramachaneni : Modeling Tabular Data Using Conditional
GAN, Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), 2019

IHI Engineering Review Vol. 58 No. 2 2025 7


https://huggingface.co/CompVis/stable-diffusion-v1-4

