⊕ TCFD提言に則った詳細な開示は、下記のWebサイトをご覧ください。 https://www.ihi.co.jp/sustainable/environmental/climatechange/

気候変動と自然資本

考え方

気候変動と自然資本(地球環境の保全・資源循環 型社会の形成)に対する考え方

IHIグループは、「自然と技術が調和する社会を創る」ことをあ りたい姿とし、ESGを価値観の軸に置いた経営(ESG経営)を 行っています。環境については、「気候変動への対策」「地球環境 の保全|「資源循環型社会の形成」の3つを重要課題として特定 し、社会システム全体の環境負荷低減に継続的に取り組んでい ます。中でも、「気候変動への対策 | をESG経営における特に重 要な課題の一つとして位置付け、対策を進めています。気候変 動は社会や経済に与える影響が非常に大きく、企業にとっては その持続可能性が問われる社会課題であり、IHIグループが取 り組むべき課題と考えています。

ガバナンス

カーボンニュートラルに向けた取り組み推進体制

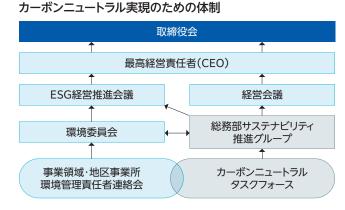
IHIグループは、「気候変動への対策」の取り組み方針や重要 事項について、全社委員会である環境委員会で審議・決定して います。

2021年度には、バリューチェーン全体でのカーボンニュート ラルの取り組みを推進するため、部門横断のメンバーで構成さ れたタスクフォースを設置しました。タスクフォースの活動につ

いては、環境委員会で報告・議論した後、ESG経営推進会議に 報告し、経営層から受けたフィードバックをグループ全体へ展開 しています。

これら委員会や会議における議論のうち、経営上の重要な 意思決定に関わるものについて、経営会議での審議を経て、取 締役会に付議しています。

自然資本(地球環境の保全・資源循環型社会の形 成)についての取り組み体制


IHIグループは、「地球環境の保全」「資源循環型社会の形成」 についての取り組み方針や重要事項についても、全社委員会 である環境委員会で審議・決定しています。また、事業所・工場 などにおいてもそれぞれ環境委員会などを設置し、全社方針を 踏まえた上でそれぞれの地域に応じた方針を掲げています。

戦略

カーボンニュートラル2050

IHIグループは、パリ協定の1.5℃目標「世界の平均気温上昇 を産業革命以前と比べて2℃より十分低く保ち、1.5℃に抑える に賛同し、[IHIカーボンニュートラル2050]を掲げています。

自社の事業活動によって直接·間接に排出される温室効果ガ ス(Scope1、2)については、2030年度に2019年度比で半減 し、2050年には実質排出量ゼロを目指します。短期的な活動と

しては、「IHIグループ環境活動計画2023」(2023~2025年度) を定め、2022年度を基準として設備投資によるScope 1、2合計 12.000t-CO₂e削減を目標に、2024年度までに9.000t-CO₂e を削減しました。2025年度はさらに3,000t-CO2e削減を目指 します。エネルギー消費原単位(売上収益当たりのエネルギー消 費量)の3%低減を目標としています。

また、上流および下流のプロセスで排出される温室効果ガス (Scope3)についても2050年の実質排出量ゼロを目指してい ます。「Scope3排出量削減ロードマップ」を策定し、特に排出量 の大きいカテゴリ11(製品使用時)とカテゴリ1(購入した製 品・サービス)を中心に削減し、Scope1、2、3全てにおいてカー ボンニュートラルを実現していきます。

脱炭素技術を有するIHIグループは、この達成に向けて取り 組むことで、グローバルなカーボンニュートラル社会の実現に率 先して貢献していきます。

気候変動と自然資本

気候変動に伴うリスクと機会

IHIグループでは、展開する事業のうち、特に気候変動の影響 を著しく受ける4つの主要事業(エネルギー事業、橋梁・水門事 業、車両過給機事業、民間エンジン事業)を対象として、簡易的 にシナリオ分析を行いました。分析結果については、右の表を ご覧ください。

今後は、気候変動の財務への影響評価などを行い、シナリオ 分析を事業戦略に生かせるよう、充実させていきます。

IHIグループでは、経営方針や事業戦略の立案において、 TCFD提言で求められている考え方を積極的に取り込むこと で、自社を含む社会全体の持続的な発展に貢献します。

シナリオ分析のプロセス

Step 1	
自社シナリ:	
設定	

外部シナリオ*を参照し、2050年の世界を想定した2つの シナリオを設定しました。

①移行リスクの大きいシナリオ

2物理的リスクが大きいシナリオ

Step 2 リスク・機会の 洗い出し

Step 1で設定した2つのシナリオに対して、リスク・機会を洗 い出しました。

Step 3 事業への 影響度評価

Step 2で洗い出したリスク・機会に対して、「発生の可能性」 と「影響の大きさ」について各々点数付けしました。両者の 積を「影響度」と定義し、リスク・機会が事業に及ぼす影響度 評価を行いました。

Step 4 対応策の立案

強靭性(レジリエンス)のある事業にするために、リスク・機 会の対応策を立案しました。

※参照した外部シナリオ

- カーボンニュートラルな世界 IEA 2DS(ETP2017のGlobal technology penetrations in LDV stock by scenario、Global electricity generationなどを参考に定性的に評価)
- 気候変動の影響が甚大な世界 RCP 8.5(IPCC AR5 WG2の風水害リスクに関する部分 を参考に定性的に評価)

事業に特化している主なリスク・機会(4つの主要事業について)とその対応策

	エネルギー事業	橋梁·水門事業	車両過給機事業	民間エンジン事業	
	「●カーボンニュートラルな世界」におけるリスク・機会および主な対応策				
リスク	◆大型化石燃料発電設備関連の需要減少	CO₂を大量に排出する素材(セメント、鋼材など)の調達コスト(炭素税など)増加	脱炭素要求に対応できず、エンジン車需要 が減少し、既存過給機需要も減少	・脱炭素要求や高速代替輸送手段の普及による航空機需要減少	
機会	 燃料転換やCCUSなど脱炭素化技術の導入需要増加 再エネ普及拡大に伴ったエネルギー需給安定化のための調整電源、蓄エネ、Power to Xの需要増加 	交通網の効率化に向けた道路需要の増加 (橋・トンネル)海外での鉄道網の強化に伴う建設需要の 増加	・脱炭素に向けた電動化車両(PHEV、 HEV、FCVなど)に対応する過給機新製品 (既存型に加え電動型)の早期市場投入に より、市場優位性を確保し、過給機需要が 増加	航空機の脱炭素要求に適合したエンジン 開発への期待が高まり、電動化や先進材 料技術を適用する機会が増大	
主な 対応策	・ 脱炭素化技術の社会実装の早期化・ エネルギー需給安定化技術の開発促進・ 遠隔監視などIoT技術によるライフサイクルビジネスの拡大	● デジタルトランスフォーメーション(DX)推進による省人化/遠隔化や工法改善による工期および工費の低減	脱炭素要求の動向に対応する電動化車両 向け過給機新製品の開発、商品化を加速	電動化や先進複合材などの高度な技術の 早期実用化	
	「●気候変動の影響が甚大な世界」におけるリスク・機会および主な対応策				
リスク	• 気象災害多発による現場の工事停滞や被 災により、工程が大幅に遅延	● 気象災害多発による現場の工事停滞や被 災により、工程が大幅に遅延	• 気象災害多発によるサプライチェーン寸断により、生産活動が停滞	● 気象災害多発によるサプライチェーン寸断 により、生産活動が停滞	
機会	気象災害で損傷した設備の早期復旧への 貢献省人化、遠隔化推進によるデジタル化需要 の増加	国土強靭化に向けたインフラ整備の需要が増加 気象災害で損傷したインフラの早期復旧への貢献	・事業特有の機会はなし	*事業特有の機会はなし	
主な 対応策	● 遠隔監視などIoT技術によるライフサイク ルビジネスの拡大	● ライフサイクルビジネスのほか、防災にも視野を広げた事業展開● インフラの保全や防災・減災、早期復旧に資する技術・体制の整備	● サプライチェーンの強靭化	• サプライチェーンの強靭化	

どの事業にも共通している主なリスクとその対応策

	主な内容	主な対応策および機会への転換		
	土体内台	土体対応をのより依式への転換		
	「●カーボンニュートラルな世界」における移行リスクとその対応策			
政策·	・炭素税の導入、産業廃棄物の規制強化、再エネ導入・設備更新によるコスト増加など	• 生産、輸送などの効率化やエネルギー消費量の適切なマネジメントによって、事業活動に		
法規制		かかるコストを低減する		
技術	脱炭素化に向けた研究開発のためのコスト増加、技術開発の失敗など	政策·技術·市場などの社会動向を見極めながら、集中的な技術開発投資を行う		
市場		市場の構造の急激な変化に対応できるように、常に複数の事業シナリオを想定した事業 計画の立案・推進に取り組む		
評判	● 気候変動への対策が不十分などの評価による受注機会の喪失、社会的信用力の低下など	• 気候変動の緩和と適応に貢献できる製品・サービスに関する情報を、分かりやすく発信する		
	「●気候変動の影響が甚大な世界」における物理的リスクとその対応策			
急性・	◆台風や洪水などの自然災害で工場・拠点が被災することによる事業活動の停止など	• 工場・拠点の事業継続計画において、気象災害への対応を組み込み、従業員の安全確保		
慢性		やサプライチェーンの強化を図る		
		予測可能な風水害に対する事前対策の策定・実施・運用		

地球環境の保全(汚染防止・生物多様性保全)の 戦略

IHIグループは、環境に関する法令違反や事故の発生ゼロを 環境目標の一つとして掲げており、事業所・工場では、環境法 令の遵守と環境事故発生防止を、環境活動の最優先課題と位 置付けて活動しています。

生物多様性の保全については、事業を継続する上で自然資 本の持続的な利用が重要であると考え、生物多様性に大きな 影響を与える気候変動への対策を中心に取り組んでいます。事 業所・丁場においては、COP15で策定された「昆明・モントリ オール生物多様性枠組(GBF) に示された2030年グローバル ターゲットに関連付けた活動を行っています。

資源循環型社会の形成の戦略

IHIグループは、資源循環型社会形成を目指し、サーキュラー エコノミーへの移行を推進しています。そのため、事業活動にお いては、リデュース・リユース・リサイクルの[3R]による廃棄物量 の削減および取水量や水消費量の削減に取り組んでいます。ま た、資源の投入量や消費量を抑えた資源効率の良い製品を提 供することはもちろん、製品ライフサイクル全体にわたるリユー スやリペア、メンテナンスを含む包括的なサービスを提供するビ ジネスの拡大に取り組んでいます。

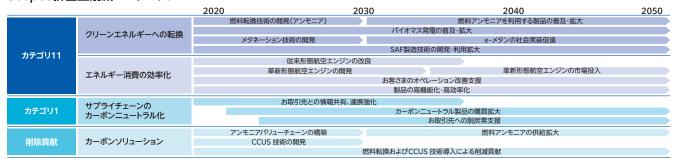
リスク管理

IHIグループでは、短期的な事業リスクに加えて、中長期の時 間軸で事業環境に変化を及ぼすサステナビリティ関連のリスク についても、事業活動に係るリスクとして管理しています。具体的 には、中長期的にIHIグループに及ぼす影響を評価し、それらを 短期的な事業リスクに落とし込んでいます。内部監査部門・コー ポレート部門・事業領域・事業部門(関係会社を含む)の役割と責 任を明確化し、重層的なリスク管理体制の中で管理しています。

指標と目標

IHIグループは、2050年までにバリューチェーン全体でカー ボンニュートラルの実現を目指しています。

工場・事務所などにおけるGHG排出量(Scope1、2)につい ては、2023年度に取締役会での決議を経て、2030年度まで に2019年度の排出量から半減することを目標としました。


取り組み

Scope3排出量の削減

IHIグループでは、Scope3排出量の大部分がカテゴリ11(販 売した製品の使用)で、2023年度の排出量の多くを石炭火力発 電用ボイラーが占めています。しかし、2025年度までにボイラー の新設工事を終了し、2026年度以降は排出量が大幅に減少す る見込みです。また、カテゴリ11に含まれるほかの製品について も、クリーンエネルギーへの転換やエネルギー消費の効率化を 進めることで、2050年までに大幅な削減を目指しています。

IHIグループは、こうした目標の達成に向けて、2050年まで にScope3排出量を実質ゼロにするためのロードマップを策定 しました。さらに、燃料アンモニアバリューチェーン構築やCCUS (Carbon dioxide Capture, Utilization and Storage)と

Scope3排出量削減ロードマップ

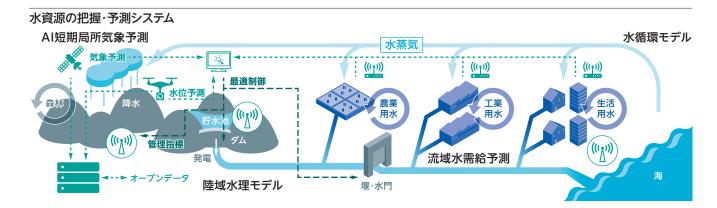
気候変動と自然資本

いったカーボンソリューションによる削減貢献により、Scope3 排出量を削減します。

主力製品である民間航空エンジンについては、お取引先と 協働し、材料調達を含むサプライチェーン全体のカーボンニュー トラル化に取り組んでいます。従来形態航空エンジンの燃費改 善や革新形態航空エンジンの開発も進めており、航空機全体 のエネルギー効率の向上を図っていきます。さらに、SAF(持続 可能な航空燃料)の製造技術の開発および利用拡大にも注力 し、バリューチェーン全体でのカーボンニュートラルを目指しま す。ほかの製品についても、高機能化・高効率化を進め、クリー ンエネルギーへの転換を推進しています。

特に注目しているのは燃料アンモニアです。燃料の製造から 受け入れ、貯蔵、利活用までの各プロセスでIHIグループの強み を生かし、バリューチェーンを構築していきます。これにより燃料 アンモニアの普及・拡大を図り、社会全体のGHG排出量削減 に貢献します。

Scope3排出量の実績・見込み (百万t-CO₂e) 1.000 —— ■ 排出実績 800 排出見込み ■ カーボンソリューションによる削減貢献 600 400 200 40 30 20


気候変動への対応と自然資本の価値創出に向け た取り組み

IHIグループは、気候変動と自然資本に関する課題解決の一 部として、水循環の見える化と最適管理を中心とした統合的な ソリューションの開発・実装を進めています。

近年、気候変動の影響により水資源不足や水害リスクが世 界的に深刻化し、産業界や社会インフラにとって、水資源の確 保と活用は重要なテーマとなっています。IHIグループは、長年 取り組んできたダムや水門といった水管理インフラ事業に加 え、将来的な水利用量増加を見据えた、水資源の適切な利用を 実現する取り組みを強化しています。

水資源に関する統合的なソリューションでは、森林・農地から 都市、工場、生活用水に至るまでの水循環を監視・制御し、ダム や農業用地を含む流域全体における最適な水配分の実現に加 え、水に起因する災害被害の抑制を目指します。具体的には、降 雨や融雪による河川増水を予測し、水田・ため池の排水調整に よる水資源の有効活用や、自然資本を生かした洪水リスクの低 減を図ります。さらに、熱帯泥炭地森林の保全を通じた乾燥によ る森林火災の抑止など、自然と技術を調和させた新たな水管 理モデルの構築を検討していきます。これらを実現させるため に、大気中の水蒸気観測をコア技術とするAIを活用した短期気 象予測と、陸域水理モデル・流域水需給予測モデルなどの先端 シミュレーション技術を融合し、水資源とその利用状況を高精 度で把握・予測するシステムに係る技術開発を進めています。

また、自然資本に関する課題解決を自社のビジネスを通じて 追求する姿勢を持ち、TNFD(自然関連財務情報開示タスク フォース)のフレームワークを用いた開示に向けた準備を進めて います。今後も、地域に根差した取り組みと先進技術の開発を 両立・融合させ、気候変動に起因するリスクの低減と自然資本 への貢献を継続していきます。

