合成セグメント(IC セグメント)の技術開発

Technical Development of Composite Segment (IC Segment)

山	田	晃	司	株式会社 IHI 建材工業 事業統括部セグメント部	
山	\square	隆		技術開発本部基盤技術研究所構造研究部 主查	
小	林		博	株式会社 IHI 建材工業 事業統括部セグメント部 部	張
荒	井		孝	株式会社 IHI 建材工業 事業統括部セグメント部 部	長

都市部などの大深度での施工によって高土水圧を受けるシールドトンネル工事において, 薄肉幅広化が可能にな る合成セグメント(IC セグメント)の開発を行った. 鋼殻とコンクリートを鉄筋を介して一体化させた合成構造で あり, 薄型化や工期短縮による経済性に加え, 優れた止水性が期待できる. 載荷試験を実施し, 解析値と近似した 挙動を示すことや, 十分な強度, 変形性能を有していることを確認した.

We have developed a composite segment (IC segment) that can be made thinner and wider in a shield tunnel construction that receives great sediment pressure during construction at large depths in urban areas. It is a composite structure in which the steel shell and concrete are integrated via reinforcing bars, which can be economically advantageous due to thinning and a shorter construction period, and excellent watertightness. We carried out a loading experiment, confirming that it showed behavior similar to the theoretical value and that it had sufficient strength and deformability.

1. 緒 言

近年のシールドトンネル工事の傾向として、コスト低 減、工期短縮を目的とした薄肉幅広化や二次覆工の省略化 が挙げられる.従来、鉄筋コンクリート(RC:Reinforced Concrete)製セグメントと鋼製セグメントとが広く用いら れているが、前者は開口部などの特殊荷重部においては鉄 筋量が増加し、断面を大きくしなければならない.後者は 大深度での施工による高土水圧下では大きな軸力が作用して、鋼材量が増大する.そこで、鋼殻と鉄筋コンクリートの合成化によって高土水圧下や、特殊荷重部においても、 薄肉幅広化が可能な合成セグメント(IC セグメント: IKK Composite Segment)の開発を行った.合成セグメン ト概要図を**第1 図**に示す.

本稿では載荷試験の結果および FEM (Finite Element Method) 解析による試験結果との比較について報告する.

(b) コンクリート打設前

(c) コンクリート打設後

第1図 合成セグメント概要図 Fig.1 Overview of synthetic segment

2. 構造概要

第2図に合成セグメントの本体断面概念図を示す. 鋼 殻の縦リブとスキンプレートの間に空隙を設けており, コ ンクリートの充填性を高めている. 軽荷重部用(第2 図-(a))では縦リブと円周方向鉄筋をフック状に加工さ れた幅方向鉄筋を用いて一体化させ, 重荷重部用(-(b)) では縦リブとスキンプレートの空隙に円周方向鉄筋を配置 して, 内外の円周方向鉄筋を幅方向鉄筋で一体化させた. 解析値の算定には主桁およびスキンプレートの有効断面を 鉄筋としてモデル化し, 引張側コンクリートを無視した RC 断面を用いた.

合成構造によって覆工厚を薄くできるため経済性に優れ ており、幅広化による工期短縮も可能である.また、内面 を除く 5 面が鋼板で覆われているため、施工時の割れ・ 欠けに起因する漏水を防ぎ、優れた止水性が期待できる.

3. 載荷試験

3.1 試験方法

第1表に合成セグメントの供試体諸元,**第3図**に供試体の主断面概要図を示す.供試体は**第2図**に示す-(a),-(b)のうち,内外面に円周方向鉄筋を配置した重荷重部用(-(b))とした.**第4図**に試験概要図を示す.ジャッキによる荷重は載荷ジグを介して2点で供試体に載荷される(載荷スパン900 mm).支承部にはローラを設置

第2回 合成セクタントの本体断面構成認因 Fig. 2 Concept of body section cross section of synthetic segment

第1表 供試体諸元

14610	- ~umpi	· · p	
項	目	単位	仕 様
	外 径	mm	6 700
	幅	mm	1 500
ット 観 ボ 小	厚さ	mm	350
	f'ck*1	N/mm ²	42
	厚さ	mm	3
スキングレート	材 質	_	SM490YA
	高さ	mm	297
主 桁	厚さ	mm	14
	材 質	_	SM490YA
	鉄筋径	mm	<i>φ</i> 19
円周方向鉄筋	本 数	本	12
	材 質	_	SD345

第3図 供試体の主断面概要図(単位:mm) Fig. 3 Main section schematic drawing (unit:mm)

し、両端可動支持条件としている(支持スパン 3 380 mm).載荷中は①荷重②変位③各部材のひず み、を計測して、耐力や剛性、鋼殻と鉄筋コンクリートが 一体化して挙動しているかを検証した.その際、実構造の 性能を確認するために、コンクリートと鋼板の接触面はグ リスによる付着切りを行わなかった.

3.2 試験結果

第5図に曲げモーメントと鉛直変位の関係図を示す.

Fig. 5 Bending moment – vertical displacement relationship diagram

ひび割れ発生前は RC 断面を用いて算定した解析値と近 似した勾配を示し,ひび割れ発生と同時に勾配を変化させ てひび割れ発生後の解析値へと推移している.耐力は解析 値の最大モーメント 674.0 kN·m を上回り,700.0 kN·m であった.また,最大モーメント到達後も極端な荷重低下 が発生せず,十分な変形性能を有していることを確認し た.この変形性能によって地震時にはぜい性的な破壊を防 ぐことが期待できる.

第6図に設計モーメント(Ma)時と降伏モーメント (My)時の主構造部材のひずみ分布図を示す.ひずみは直 線上に分布しており、中立軸位置が解析値とほぼ一致して いることから、平面保持が成立し鋼殻と鉄筋コンクリート が一体となって挙動しているといえる.

4. FEM 解析

従来,コンクリートの非線形性や鋼板との接触要素を定 義する必要性から,合成構造は FEM 解析の収束性が悪い とされてきた.しかし,近年の解析環境の充実によって合 成構造であっても解析による評価が可能になりつつある. 以上の背景から本稿では FEM 解析を行い,載荷試験結果 との比較を行った.また,第1図に示す斜リブのピッチ をパラメータとして解析を行い,耐荷挙動に及ぼす影響を

検討した.

本稿の解析は汎用有限要素解析コード ABAQUS ver. 6.12 を用いて行った.

4.1 解析パラメータ

解析パラメータは斜リブのピッチとし、① 縦リブと縦 リブの間隔 746 mm を 2 等分するよう斜リブを配置した ケース 1 ② 3 等分するよう斜リブを配置したケース 2 ③ 4 等分するよう斜リブ配置したケース 3, とした.

4.2 解析モデル

例としてケース2の解析モデル図を第7図に示す.解 析モデルは対称性を考慮して1/4モデルとした. 鋼板は シェル要素,鉄筋はビーム要素,コンクリートはソリッド 要素とした.また,試験体ではグリスによる付着切りを行

わなかったが、付着作用はごく早期に喪失すること着目す るのは最大荷重付近であることから、コンクリートと鋼板 の境界面には接触要素を定義し、摩擦係数は 0.0 とした.

4.3 材料物性

各材料のひずみと応力の関係を**第8**回に示す. コンク リートの圧縮強度は試験値である 52.3 N/mm², コンク リートの引張強度は 3.2 N/mm² とし, 鋼板および鉄筋の ひずみと応力の関係は弾性係数を 210 × 10³ N/mm² とし た⁽¹⁾. 鋼板の降伏点(394 N/mm²)以降は弾性係数の 1/100 とするバイリニア型を用い, コンクリートの軟化域 や鉄筋の降伏後の挙動は, コンクリートと鉄筋の付着の影 響を考慮した⁽²⁾. また, ポアソン比はコンクリート 0.2, 鋼板および鉄筋 0.3 とした.

4.4 荷重条件および拘束条件

本解析の荷重条件と拘束条件を第9図に示す.荷重載 荷位置は試験と同様,セグメント中心から450 mmの位 置への線載荷とした.荷重載荷方向は第9図に示すZ軸 の負の方向とし,荷重載荷方法は解析の収束性を考慮して 強制変位とした.拘束条件は第9図に示すように,解析

第9図荷重・拘束条件(単位:mm) Fig.9 Load/constraint condition (unit:mm)

第8図 各材料のひずみと応力関係図 Fig. 8 Strain-stress relationship diagram of each material

モデルの対称面にはその法線方向の並進を拘束した.また,支点部は試験と同様にZ方向の並進を拘束した.

4.5 解析結果

(1) 載荷試験結果との比較

破壊モーメントは実測値が 700.0 kN·m, 解析結果 が 724.7 kN·m となった. 試験値と解析値の差異は 5%未満と小さく, ほぼ一致した(**第5図**参照).

第10図に-(a)鉛直変位 59.1 mm の時(最大曲 げモーメント時)と,-(a)から変位が 5 mm 進行 した-(b)鉛直変位 64.1 mm の時のコンクリートの 最小主応力コンター図を示す.荷重載荷位置からセ グメント中心側のコンクリート上縁の最小主応力が,-(a)で示す最大曲げモーメント時よりも変位が進ん だ-(b)では低下しているのが分かる.荷重載荷位 置よりセグメント中心側は等曲げモーメント発生区 間であり,せん断力は発生しない.つまり,本試験 の供試体はせん断力ではなく曲げ圧縮力による破壊 によって部材耐力を失ったものと推測される.

(2) 斜リブのピッチの影響

第11図に斜リブのピッチが異なるケース1,2,3 の曲げモーメントと鉛直変化関係図を示す.ここで, 第11図に示すケース1とケース3を比較すると斜 リブのピッチが狭くなるとごくわずかに耐荷力が増 加する.斜リブを部材周方向に断続的に数多く設け ることでスキンプレートの曲げモーメントに対する 有効幅が部分的に増加していることが考えられるも のの,本検討の結果ではその影響は小さいといえる.

(1) 載荷試験結果

曲げモーメントと鉛直変位の関係,耐力ともに解 析値と近似した結果が得られ,計算手法が適正であ り,平面保持が成立したことで鋼殻と鉄筋コンク リートの一体化が確認された.

(2) FEM 解析に結果

載荷試験結果と FEM 解析結果がほぼ一致しており、合成セグメントの性能を解析的に評価できた.

斜リブのピッチが鉛直変位と曲げモーメントの関係に及ぼす影響は小さい.この原因はコンクリート とスキンプレートの間にスキンプレートの面外方向

第 10 図 コンクリートの最小主応力コンター図 Fig. 10 Minimum main stress contour plot of concrete

のずれ(すき間の発生)を抑制するようなずれ止め 機構が存在しないことによるものと考える.また, このことから合成効果は端部にある継手板の拘束に よるところが大きいと思われる.

6. 結 言

今回実施した載荷試験および FEM 解析によって合成セ グメントの設計手法と解析的評価の基礎を確立することが できた.今後は、本セグメントの特長である高剛性、高止 水性および耐震性(高変形性)などによって、多様化す るシールドトンネルの用途に対応して社会の発展に貢献していく所存である.

参考文献

- (1) 公益社団法人土木学会:2012 年制定コンクリート標準示方書[設計編] 2013 年 3 月 pp. 34 47
- (2) 公益社団法人土木学会:2012 年制定コンクリート標準示方書[設計編] 2013 年 3 月 pp. 452 467