H3ロケット 1 段エンジン LE-9 ターボポンプの開発

Development of Turbopump for LE-9 Engine

水	野		勉	航空・宇宙・防衛事業領域宇宙開発事業推進部	主幹	技術士(機械部門)
小	\square	英	男	航空·宇宙·防衛事業領域宇宙開発事業推進部	部長	
新扌	丰山		樹	航空·宇宙·防衛事業領域宇宙開発事業推進部	Ph. D.	
兀	宮	教	行	航空・宇宙・防衛事業領域宇宙開発事業推進部		

LE-9 エンジンは、高い信頼性と性能およびコストの面で国際競争力を目指す H3ロケットの1 段用液体酸素・液体水素エンジンである. エンジン設計手法は最適化設計アプローチを用いて、従来のエンジン開発と一線を画している. また、推力は H-II Aロケットの1 段用 LE-7A エンジンの 1.4 倍弱となる 1 500 kN レベルであるが、エンジンサイクルとしては 2 段燃焼サイクルからエキスパンダブリードサイクルの採用へ変更になっている. そのため、 ターボポンプとしては相当異なる設計仕様が要求されている. 本稿では LE-9 エンジン用ターボポンプの設計仕様 や技術的特徴について述べるとともに、現在進行している開発試験の状況について説明する.

LE-9 is a new cryogenic booster engine with high performance, high reliability, and low cost, which is designed for H3 Rocket. It will be the first booster engine in the world with an expander bleed cycle. In the designing process, the performance requirements of the turbopump and other components can be concurrently evaluated by the mathematical model of the total engine system including evaluation with the simulated performance characteristic model of turbopump. This paper reports the design requirements of the LE-9 turbopump and their latest development status.

1. 緒 言

現在,運用中の H- II A/Bロケットに対して,コスト削減,信頼性向上を目的とした H3ロケットは,2020 年度に試験機1号機の打ち上げを目指し開発が進行中である.

ロケット開発においてエンジンは, 信頼性・コスト・性 能を左右する重要な要素であり, H3ロケット 1 段用新規 エンジンとして LE-9 エンジン⁽¹⁾を開発中である.

ロケットエンジンは、タンクから供給された低圧の推進 剤をターボポンプで昇圧し、噴射器を介して燃焼室に噴射 し、高温高圧条件で燃焼させ、その燃焼ガスの流れを、ノ ズルで超音速に加速することで推進力を発生させる。

第1図に LE-9 エンジン外観⁽¹⁾を示す.また第2図 に LE-9 エンジンサイクル⁽²⁾を示す.LE-9 エンジンは 液体酸素と液体水素を推進剤として,シンプルでロバスト なエンジンサイクルであるエキスパンダブリードサイクル を採用した世界初の大推力エンジンである.

本稿では LE-9 エンジンの要求仕様および当社が開発を 担当しているターボポンプの技術的特徴を述べるととも に,開発の進捗について説明する.

第1図 LE-9 エンジン外観⁽¹⁾ **Fig. 1** Image of LE-9 engine⁽¹⁾

2. LE-9 エンジン概要

2.1 エンジンコンセプト

LE-9 エンジンのコンセプトは、低コスト化および信頼 性の向上である⁽²⁾. そのため先に述べたようにエキスパ ンダブリードサイクルを採用することによって、ガスジェ

ネレータサイクルや2段燃焼サイクルが必要とするター ビン駆動用の燃焼器をもたず,エンジンシステムを簡素化 し,排気ガスダクトを含むタービン部の低温化を図ること で,高信頼性と低コストを両立させるエンジンとした.

一方で、エキスパンダブリードサイクルは、タービン駆動ガスが燃焼ガスと比較して温度が低いため、所定出力を 得るには高いタービン効率が必要とされる.なお、タービ ン出力を確保するほかの方法としては、タービン駆動ガス 流量を増加すればよいが、エキスパンダブリードサイクル では、エンジン比推力の低下を招いてしまい性能要求を満 足しにくい.

LE-9 エンジンではその課題解決のため,エンジン設計 諸元の設定に,多数のコンポーネント設計パラメータ群か ら網羅的に最適設計点を選定する設計アプローチ^{(3),(4)} を行い,高エンジン比推力を達成するタービン効率などの ターボポンプ設計諸元を実現した.

このエンジン最適設計の際に, 燃焼器系と供給系 (ターボポンプ)間に網羅的な解析に必要なインタフェー スモデルを構築することによって, 従来, 多大な労力を費 やしていたインタフェース調整や, 互いにマージンを確保 することで局所最適となっていた状況を解消し, エンジン システム全体の最適設計を短時間で実施することを可能と した⁽⁴⁾.

一方,コストダウンについても,概念設計段階から部品 点数削減案や特殊工程の削減案を考慮し,製造の観点から は、HIP (Hot Isostatic Pressing) 焼結素材および AM (Additive Manufacturing)素材などの革新的生産技術を適用することで低価格化を推進した.

2.2 インタフェースモデル

前述のとおり、LE-9 エンジンシステムでは、その仕様 検討に際して、燃焼器系と供給系間インタフェースモデル を構築し、エンジン全体で最適化検討を行えるようにし た. 第3図にインタフェースモデルのイメージ図を示 す⁽⁴⁾.具体的には以下に示す供給系特性をまとめて表す ことのできるターボポンプインタフェースモデル(エン ジンシステムと共有する設計パラメータを引数とした応答 曲面)を構築した.

(1) 設計線図

設計パラメータを引数としたターボポンプ特性を 示す線図

(2) 評価指標

ターボポンプ成立性を示す制約条件

(3) 性能曲線

選定した設計点およびオフノミナル(設計基準値 外の値)におけるターボポンプ特性を示す関数

2.3 エンジン諸元

LE-9 エンジン主要諸元を**第1表**⁽²⁾に示す.

エンジン推力は 1 471 kN, 比推力は 425 s である.

エンジンの特徴としては、先にも述べたように大推力で ありながらエンジンサイクルにエキスパンダブリードサイ クルを採用しており、バルブ駆動方式には電動バルブを採 用することで、エンジン推力スロットリングを可能として いる.

第2表⁽²⁾に LE-9 エンジン FTP 仕様を示す. 液体水 素ターボポンプ(Fuel Turbo Pump:以下, FTP)につい

項目	単 位	LE-9 エンジン	LE-7A エンジン
エンジンサイクル	-	エキスパンダブリードサイクル	2 段燃焼サイクル
推力(真空中)	kN	1471(63%スロットリング可)	1 100
比 推 力(Isp)*1	s	425	440
質 量	t	2.4	1.8
全 長	m	3.75	3.70
混 合 比	_	5.9	5.9
燃焼圧力	MPa	10.0	12.3
FTP吐出圧	MPa	19.1	28.1
	MPa	17.9	17.8(メイン)
UIP吐西庄			26.6(スプリット)
バルブ駆動方式	-	電動バルブ	空圧バルブ

第1表 LE-9 エンジン主要諸元⁽²⁾ Table 1 LE-9 engine characteristics⁽²⁾

(注) *1:推進剤の質量流量に対する推力の大きさ

第2表 LE-9 エンジン FTP 仕様⁽²⁾ Table 2 LE-9 engine fuel turbopump characteristics⁽²⁾

項目	単 位	LE-9 エンジン		
エンジン推力レベル	%	100	63 (スロットリング)	LE-7A エンジン
回 転 数	rpm	41 600	34 800	42 300
ポンプ吐出圧	MPa	19.1	13.8	28.1
ポンプ質量流量	kg/s	51.6	32.4	37.2
タービン入口圧	MPa	8.3	4.5	20.9
タービン膨張比	-	8.5	8.3	1.6
タービン入口温度	K	443	443	701
タービン質量流量	kg/s	9.1	4.9	35.4

ては、ノミナル回転数が 41 600 rpm と LE-7A エンジン (以下, LE-7A)並みであるが、タービン膨張比は 8.5 と 非常に高く、タービン効率も 0.65 と高い値となってい る. 一方で、ポンプ側の吐出圧は 19.1 MPa と LE-7A と 比較して約 7 割弱の値となっている.

また, **第3表**⁽²⁾に LE-9 エンジン OTP 仕様を示す. 液体酸素ターボポンプ(Oxidizer Turbo Pump:以下, OTP)は, ノミナル回転数が 17 000 rpm と LE-7A より も低く, タービン入口圧は 0.94 MPa と極端に低い一方 で, タービン効率は 0.71 と高い値を示していることが LE-9 エンジンにおけるターボポンプ仕様の特徴として挙 げられる.

3. LE-9 エンジンターボポンプの特徴

3.1 液体水素ターボポンプ

第4図に LE-9 エンジン FTP ロータ組立を示す.

LE-7A の FTP では単段インデューサと 2 段インペラ の構成が必要だったが、LE-9 エンジンでは要求吐出圧が

 Table 3
 LE-9 engine oxidizer turbopump characteristics (2)
 LE-9 エンジン 項 目 単 位 LE-7A エンジン 63 エンジン推力レベル % 100 (スロットリング) 口 転 数 17 000 13 300 18 300 rpm 17.8 (メイン) ポンプ吐出圧 MPa 17.9 13.1 26.6 (スプリット) ポンプ質量流量 303 190 kg/s 219 タービン入口圧 MPa 0.94 0.51 19.6 タービン膨張比 2.5 2.4 1.4 _ タービン入口温度 330 318 707 Κ タービン質量流量 kg/s 8.3 4.5 16.4

第3表 LE-9 エンジン OTP 仕様⁽²⁾

第4図 LE-9 エンジン FTP ロータ組立 Fig. 4 LE-9 engine fuel turbopump rotor assembly

緩和されたことから、2 段インデューサと単段のインペラ の構成とした. インペラの単段化による軸長短縮化に伴 い、40 000 rpm 以上という高回転ながら 2 次危険速度以 下での定格運転を可能にすることで振動安定性を向上させ るとともに、LE-7A で必要としていたダンパ機構を削除 した.

なお、インペラ背面にはスワルブレーカ機構を採用する ことで圧力分布をコントロールし、ロータ系減衰比を確保 することで自励振動の抑制を図った.また、低コスト化と 製造制約条件の緩和および構造強度余裕の確保のために、 インペラはシュラウドをなくしたオープンシュラウド形態 とした.さらに、軸受は軸受冷却流量低減によってポンプ 効率を向上させる目的でハイブリッドセラミック軸受を採 用、タービンは低エンタルピーのタービン駆動ガスから大 出力を得るために、タービン膨張比を大きくした2段式 衝動超音速タービンを採用した.

3.2 液体酸素ターボポンプ

第5図に LE-9 エンジン OTP ロータ組立を示す.

OTP タービンの入口圧は低く,タービンにて大出力を 発生させるためには,速度比とノズル面積を大きく設計す る必要があり,タービンディスク直径が非常に大きな設計 となった.なおタービンは2段反動遷音速タービンとし た.

一方で OTP の 1 次危険速度における振動モードはター ビンが振れ回るモード形状であることから, OTP はシャ フト径を大きくし, 1 次危険速度以下で定常運転させる剛 性ロータ形態を採用した. ただしシャフト径拡大に伴い, 軸受径および軸封シール径の拡大が必要となり, 軸受保持 器に採用しているガラス織布については, 大型化に伴う技

第5図 LE-9 エンジン OTP ロータ組立 Fig. 5 LE-9 engine oxidizer turbopump rotor assembly

術的課題が多々発生したが,所定の要素試験などによって クリアし,大型化採用のめどを得た.なおインペラ背面に は FTP と同様にスワルブレーカ機構を採用し,圧力分布 をコントロールすることでロータ位置の調整代にマージン を確保した.

3.3 コストダウン

概念設計の段階から,① 部品点数削減 ② 加工方法変更 ③ 特殊工程変更および削除 ④ 素材変更 ⑤ 組立工程変更 および削除,などのすべての分野にわたるコストダウンア イデアを抽出し,その一つひとつについて実現性を追求し た.

従来エンジンでは必要であった副燃焼器を削除したた め、ターボポンプの吐出圧は低く抑制することが可能とな り、インペラの単段化によって部品点数は削減が可能と なった.また、高温のタービンガスが低温化したことで、 これまで高温のため採用することができなかったタービン 材料の変更およびブリスク化、金めっきの削除などにより コストダウンが可能となった.インペラは FTP、OTP と もシュラウドをなくしたオープンインペラを採用し、加工 工程を削減することでコストダウンを実現した.タービン ノズルの素材はネットシェイプ素材を採用することで翼型 生成の加工工数を削除し、大幅なコストダウンに成功し た.**第6図**に HIP 焼結素材のセカンドノズルを示す.

また H3ロケットは, H-II A/Bロケットと比較して年間 生産台数が増加する計画である.このため, 機械加工工程 においては設備を専用化することで生産効率の向上を図 り, スケジュール短縮とともにコストダウンを実現する.

第6図 HIP 焼結素材のセカンドノズル Fig. 6 Material of hot isostatic pressing (Second Nozzle)

4. LE-9 エンジンターボポンプ単体試験

4.1 試験目的

第7図に LE-9 エンジンの開発スケジュールを示す.

2014 年から要素レベルの試験を行い、デバイスの機 能・性能を確認したうえで、2016年度からターボポンプ の実機型モデル (Engineering Model) を製造し, 2016年 度末に初号機ターボポンプ単体試験を実施した.

ターボポンプ単体試験の目的は、エンジン燃焼試験に先 行して,以下に示すターボポンプ単体特性を取得し,リス ク低減を図るとともに、エンジン要求性能を満足している ことを確認することである.

- (1) ターボポンプ性能特性(ポンプ,タービン)
- (2) 軸振動特性(アキシャル, ラジアル)

- (3) 機構系特性(軸受,軸封シール)
- (4) 内部循環特性

なお、試験は国立研究開発法人宇宙航空研究開発機構 (JAXA)角田宇宙センター(宮城県)で実施した.

第8図に LE-9 エンジン FTP 単体試験, 第9図に LE-9 エンジン OTP 単体試験を示す.

第8図 LE-9 エンジン FTP 単体試験 Fig. 8 LE-9 engine fuel turbopump cold flow test at JAXA

第9図 LE-9 エンジン OTP 単体試験 Fig. 9 LE-9 engine oxidizer turbopump cold flow test at JAXA

BBM:原型

- EM :実機型
- OM :認定型
- SDR:システム設計審査会 PDR:基本設計審査会
- CDR:詳細設計審査会

第7図 LE-9 エンジンの開発スケジュール⁽²⁾ **Fig. 7** Development schedule of LE-9 engine ⁽²⁾

PQR:認定試験後審查会

4.2 試験結果

0

10

20

LE-9 エンジンターボポンプ単体試験結果を**第4表**に示す.

また, 第10図に LE-9 エンジンターボポンプ単体試験 データの一例を示す.GH2(水素ガス)を蓄圧した気蓄 器からタービンにガスを供給し,ランタンクから LH2 (液体水素)もしくは LOX(液体酸素)を供給すること でターボポンプの定格作動を確認した.回転数の履歴に示 されるように,回転数はスムーズに上昇,維持,低下して おり,始動停止過渡特性に問題はなく,FTP,OTP いず れのターボポンプも定常運転中の特性は,ほぼ設計予測値 を満足した.

> **第4表** LE-9 エンジンターボポンプ単体試験結果 **Table 4** Data of LE-9 engine turbopump cold flow test

· · · ·						
	項	目	単	位	FTP	OTP
	総試験	回数	回		4	6
	総試験	秒時	s	;	69.5	70.9

4.3 自励振動の抑制

FTP は実機型の試験に先立ち,原型モデルでのターボ ポンプ試験を実施している.原型モデル試験では,ロータ 系がアキシャル方向に大きく振動する事象が発生した.振 動の要因はロータ位置調整機構の減衰比不足による自励振 動と推定される.このため,実機型では減衰比を設計評定 としてターボポンプの内部循環設計を実施した結果,原型 モデルで発生していた自励振動は抑制され,安定した定常 性能を示すことを確認した.

5. LE-9 エンジン燃焼試験

5.1 試験概要

ターボポンプ単体試験が終了した実機型はエンジンシス テムに組み込み,2017年4月から以下の特性を取得する ことを目的として,JAXA種子島宇宙センター(鹿児島 県)で初号機としての燃焼試験を実施した.**第11図**に LE-9エンジン燃焼試験を示す.

第 10 図 LE-9 エンジンターボポンプ単体試験データ **Fig. 10** Data of LE-9 engine turbopump cold flow test

60

(a) エンジン外観

30

試験秒時(s)

40

50

(b) エンジン燃焼

第11図 LE-9 エンジン燃焼試験 Fig. 11 LE-9 engine hot firing test

- **Fig. 12** Data of LE-9 engine hot firing test
- (1) 定常性能の確認
- (2) 始動/停止/スロットリングシーケンス確立
- (3) 過渡特性の確認
- (4) ターボポンプ動特性の取得
- (5) 電動バルブによる作動点制御特性の取得
- (6) 予冷特性の取得

5.2 試験結果

燃焼試験は合計 11 回実施した.

第12 図に LE-9 エンジン燃焼試験作動履歴の一例を示 す.本試験は、エンジン始動直後は高推力に立ち上げた 後、スロットリング制御で推力を低下させ、推力コント ロールバルブ(TCV)を単独で周波数制御し、次にメイン LOX バルブ(MOV)を単独で周波数制御した試験であ る.

回転数の履歴に示されるように、ターボポンプの回転数 はスムーズに上昇および下降しており、始動停止過渡特性 に問題はなかった.また FTP, OTP いずれのターボポン プも定格運転中の特性は、ほぼターボポンプ単体試験結果 を再現し、周波数制御に対するターボポンプ特性の追従性 も問題なく、良好な動特性データの取得ができた.エンジ ンシステムではバルブ制御に対する推力、混合比への動特 性データを取得した.なお初号機の燃焼試験シリーズを通 じて、エンジン推力 60 ~ 90%レベルの機能・性能を確 認することができた.

今後は2号機以降のエンジン燃焼試験で,作動範囲に 対する成立性ならびに寿命確認を実施する予定である.

6. 結 言

LE-9 エンジンに関する開発の概要, エンジン設計仕様

やターボポンプの技術的特徴について紹介した.

LE-9 エンジンは、世界的に見ても例をみない大推力エ ンジンにエキスパンダブリードサイクルを適用したエンジ ンであり、設計アプローチとしては最適化設計手法を用い て、エンジンとターボポンプ間ではインタフェースモデル による統合的な設計を採用した.また革新的生産技術や徹 底的なコストダウンを図ることで、高信頼性と低価格を両 立させるエンジンとなっている.

現在,実機型の設計,製造が終了し,ターボポンプ単体 試験によって所定の機能および性能を満足していることを 確認したのち,エンジン燃焼試験で LE-9 エンジンシステ ムの技術的成立性について確認した.

今後,実機型の試験を継続するとともに,試験機打ち上 げに向けて,認定型試験に移行する予定である.

なお,本件は国立研究開発法人宇宙航空研究開発機構の 開発契約に基づいて実施している.

参考文献

- (1) N. Negoro, T. Tamura, H. Manako, T. Onga, T. Kobayashi and K. Okita : Overview of LE-9 Engine Development for H3 Launch Vehicle 67th International Astronautical Congress (2016. 9)
 pp. 26 30
- (2) N. Azuma, Y. Ogawa, K. Aoki, T. Kobayashi, K. Okita, T. Mizuno, K. Niiyama and N.Shimiya : Development Status of LE-9 Engine Turbopumps 53rd AIAA/SAE/ASME/ASEE Joint Propulsion Conference (2017.7)
- (3) 呉 宏堯,森 初男,鈴木秀男,松浦 峻,長谷 川雄大:統合的設計管理手法に関する研究(その1)
 「セット・ベースド・デザイン」と「モデル・ ベースド・リスクマネジメント」- 品質管理学 会第38回年次大会研究発表会発表要旨集 2008年
- (4) 三橋ほか:LE-X エンジンシステムの統合化設計
 に用いるターボポンプインタフェースの構築 第
 53 回宇宙科学技術連合講演会 京都 2009 年 9 月
- (5) 水野 勉,小林 聡,小口英男:LE-X エンジン
 用ターボポンプの研究 IHI 技報 第49巻第3号
 2009年12月 pp.178 181