Design & Build プロジェクト「イズミット湾横断橋」 (オスマン・ガーズィー橋)の設計

Design for "IZMIT Bay Bridge" (Osman Gazi Bridge) in Design & Build Project

井 H 学 株式会社 IHI インフラシステム 海外プロジェクト室トルコプロジェクト部 主幹 Ш 上剛 司 株式会社 IHI インフラシステム 代表取締役社長 柳 原 Æ 浩 株式会社 IHI インフラシステム 海外プロジェクト室 取締役 社 浦 潤 __**.** 株式会社 IHI インフラシステム 海外プロジェクト室エンジニアリング部 理事 山崎 康 嗣 株式会社 IHI インフラシステム 技師長

株式会社 IHI インフラシステムは、中央径間 1 550 m の「イズミット湾横断橋」の設計から建設までを一括で請 け負った.設計は、ヨーロッパ基準・トルコ基準をベースに進めたが、長大橋に適用できないものや規定がないも のがあり、また、基本条件も請負者の責任で調査・決定して、プロジェクトに即した包括的なプロジェクト設計基 準(Design basis)を独自に策定する必要があった.本稿では、データ収集、分析、試験、実験などをとおして作り 上げた Design basis について、幾つかの検討例を交えて紹介する.また、Design basis を基に進めた主要構造物の設 計についても概説する.

IHI Infrastructure Systems Co., Ltd. entered into a contract for a Design & Build project for the IZMIT Bay suspension bridge, with a main span of 1 550 meters, in Turkey. In addition to the design, which is to follow Eurocode and/or Turkish standards, the contractor is responsible for study and development with regard to certain requirements which are not suitable for longer bridges or that are not covered in Eurocode or Turkish standards, as well as with regard to the design conditions. In this regard, a comprehensive basis for project design, or a design basis, has been established. In this paper, selected examples related to design basis are introduced. An introduction is also give to the design of major structural components.

1. 緒 言

株式会社 IHI インフラシステム(以下, IIS)では、ト ルコ共和国(以下, トルコ)の北西部に位置する IZMIT (イズミット)湾をまたぐ全長2907m,中央径間 1550m(世界第4位のスパン)を誇る吊橋となる「イ ズミット湾横断橋」の建設工事を手掛け,2016年7月1日 に交通開放させた.「イズミット湾横断橋」(**第1図**)は,

第1図「イズミット湾横断橋」全景 Fig.1 General view of "IZMIT Bay Bridge"

オスマン帝国の祖にちなみ,正式名称を「オスマン・ガーズィー橋」"Osman Gazi Bridge"と名付けられた.本稿では、これまで使われていた呼称で、かつ、日本でなじみの深い「イズミット湾横断橋」という名称を使用する.

IIS の工事範囲は、EPC 契約(Engineering, Procurement, Construction:吊橋一式の設計・調達・建設までを一括で 請け負う)に基づく Design & Build であり,気象・地 震・地盤などの設計基本条件も請負者の責任で調査・決定 する.設計はヨーロッパ基準(Eurocodes:以下,EN) とトルコ基準をベースにして進めたが,長大橋にそのまま 適用できない規定や,規定がないものなどがあり,このプ ロジェクトに即した包括的なプロジェクト設計基準(以 下, Design basis)を独自に策定する必要があった.本稿 では、①データ収集,分析 ②リスクアナリシス ③ 試 験・実験,などをとおして作り上げた Design basis を 使って進めた設計について,幾つかの事例を交えつつ,主 要構造物ごとに概説する.

2. プロジェクト⁽¹⁾

本橋は、トルコ第1位の都市イスタンブール市と第3 位の都市イズミル市を結ぶ約420 kmのゲブゼーイズミ ル高速道路のBOT (Build Operate Transfer)プロジェク トの一部である。高速道路BOTプロジェクトは、トルコ とイタリアの建設業6社から成るJV(以下,NOMAYG JV)が受注し、そのうちのイズミット湾を南北に横断す る吊橋EPC工事が、NOMAYGJVとIIS・伊藤忠商事株 式会社のコンソーシアム間で2011年9月に契約調印さ れた。その後、設計に着手し、2013年1月1日に現地 工事を正式着工、事故などの困難を乗り越えて、42か月 で完成させた。

この高速道路プロジェクトは、トルコの道路事業として は BOT 運営の先駆けである。BOT のコンセッション期 間は 22 年 4 か月、うち、道路全体の建設期間が 7 年、 管理運営期間が 15 年 4 か月の計画である。全線が開通す ると、トルコ北西部と西部地域の経済・産業の発展ととも に雇用促進が期待され、さらには、マルマラ海周辺を結ぶ 道路のインフラ整備がより進むことになるため、いっそう のビジネスの機会が生まれると考えられている。「イズ ミット湾横断橋」が完成すると、湾をまたぐ対岸への交 通の所要時間が、現状の船による約 1 時間、湾を迂回す る道路の約 1.5 時間から、6 分に短縮される。

IIS は、IHI 時代から多くの海外橋梁工事を手掛けてき

た. 特にトルコにおける橋梁事業としては過去 40 年以上 の歴史をもつ. しかし, 全長 3 km に及ぶ吊橋の建設を IIS 単独で請け負うことは初めてであり, また, 完成する とトルコ最長の橋という高い注目度, かつ, BOT 工事の 特徴である工期厳守が第 1 の目的とされており, とても チャレンジングなプロジェクトであった.

コンクリート,鋼材ともに相当な物量であるため,工期 に与える数量のインパクトは大きく,いかに数量を最適化 した設計ができるかがプロジェクト成否のカギを握るが, 同時に,施工の安全性,品質確保,将来の維持管理の容易 性も求められる.設計・施工において,斬新かつ大胆な改 善による合理化と,施工の確実性への高い信頼性が要求さ れた.

IIS は、プロジェクト遂行のために各種専門下請け会社 を起用した.設計では、デンマークのコンサルタント会 社、IDC (Independent Design Checker)として、イギリ ス(本体構造物 + 一部仮設構造物)とアメリカ(仮設構 造物)のコンサルタント会社を起用した.そのほか、 ケーブル調達は日本の製作専門業者、桁塔の製作はトルコ の製作専門業者、土木工事はトルコの海洋土木会社など、 専門性・工期・費用を考慮のうえ、発注業者を決めた.た だし、ほとんどの業者は吊橋の施工経験がないため、スー パーバイザーを派遣して技術的な指導と品質・工程管理を 行った.

3. 耐震設計⁽²⁾

トルコは世界有数の地震国である. 架橋地点であるイズ ミット湾には, アナトリア半島北部を東西に約 1 200 km にわたり横断している北アナトリア断層があり, 架橋地点 はこの断層から約 2 km の位置にある. 1999 年には, イ ズミット湾で M7.4 を記録したコジャエリ地震によって, 約 17 000 人もの死者が出ている.

耐震設計には性能照査型設計法を採用しており,再現期間 150年(FEE: Functional Evaluation Earthquake),1000年 (SEE: Safety Evaluation Earthquake),そして2475年の 地震(NCE: Non Collapse Earthquake)に対して,それ ぞれの要求性能を満足するように設計している.第1表 に耐震性能要求を示す.①FEEに対しては軽微な損傷を 許容するが,地震後に直ちに供用可能であること②SEE に対しては修復可能な損傷を許容するが,地震後に限定的 な供用が可能であること③NCEは損傷を許容するが橋 が崩壊しないこと,が要求性能である.

第1表 耐震性能要求 Table 1 Seismic performance criteria

耐 震 性 評 価 区 分	再現期間 (年)	要求性能
FEE (Functional Evaluation Earthquake)	150	地震後も機能は健全で、補修しないで使用可能である(最小限の損傷).
SEE (Safety Evaluation Earthquake)	1 000	地震後に適切な残存耐力を有し,緊急輸送路としての機能を確保すると ともに,点検・補修が可能である.
NCE (Non Collapse Earthquake)	2 475	地震によって構造物全体系が崩壊しない.

(注) FEE: 損傷の最小化
SEE: 非破壊要求 2
NCE: 非破壊要求 1

「イズミット湾横断橋」の耐震設計の特徴として,主塔 基礎の免震構造,アンカレッジの設計,主塔の設計が挙げ られる.これらの設計は,地盤調査・試験,架橋地点の地 震特性調査・解析と並行して進められた.地盤調査では, ボーリング,CPT(コーン貫入試験),ボーリングサンプ ルによる特性把握試験,層の全体像と断層の有無を確認す るための超音波による地質調査を実施した.

北アナトリア断層の主断層は架橋地点の南側約 2 km で あるが,南側は断層の遷移区間の境界付近に位置し,付随 する 2 次断層が当初想定していた南側アンカレッジ位置 の直下で発見された.これに伴い,中央径間長さを変えず に,橋の位置を北側に約 150 m 移動させた. 第 2 図に架 橋地点周辺の断層を示す.

主塔基礎構造は、① 鋼管打込みによって改良された地 盤 ② 砕石層 ③ コンクリートケーソン ④ 鋼コンクリート

第2図 架橋地点周辺の断層 Fig. 2 Seismic faults around bridge location

の合成構造であるシャフト ⑤ 鋼製主塔との接合部となる 基礎土台 ⑥ 基礎土台を結ぶタイビーム,から成る. **第 3** 図に主塔基礎を示す.

コンクリートケーソンは砕石層の上に載っているだけで あり、大地震時には、主塔基礎と地盤の間の水平荷重に対 するヒューズシステムとして機能する.この免震構造は、 吊橋では初めて採用されたが、これによって、基部から伝 わる外力を減らすことで経済設計を行っている.

大地震時のヒューズシステムを含む非線形な挙動と,鋼 管打込みによって改良された地盤を適切に評価して設計に 反映するために,地盤調査結果を基にした 2D および 3D の FEM (Finite Element Method)モデルによるローカル な検証(PLAXIS と ABAQUS を使用)に加え,全体解 析モデルに使用するための非線形ばね支点モデルの設定を 行った. 第4図に主塔基礎部の非線形ばねモデルを示す. 第5図に大地震(NCE)を代表する設計地震動(計7 波)におけるケーソンと地盤の橋軸方向の相対変位時刻 歴プロットを示す.残留相対変位は約0.6 m であり,大 地震後の要求性能を十分満足している.

第6図に南側アンカレッジを示す.コンパクトなアン カレッジ設計を可能にするために、メインケーブルはサイ ドスパンピア上のサドルで偏向している.前述のとおり、

第4図 主塔基礎部の非線形ばねモデル Fig. 4 Soil/structure interaction model for tower foundations

(a) アンカレッジ構造全体図

南側アンカレッジは、北アナトリア断層から遠ざかる方向 に、当初想定位置から約 150 m 移動させたが、2 次断層 がアンカレッジ下で発生しないと結論付けることは不可能 であり、この可能性を考慮した設計を行った. 大地震時 に、2次断層によってアンカレッジとサイドスパンピア間 に相対変形・回転が発生すると、橋としての機能を提供で きなくなるばかりか、非常に大きな付加断面力によって橋 の倒壊を招きかねない、このため、アンカレッジとサイド スパンピアは、厚さ 16 m の堅固なスラブを介して一体化 した、この解決策は、アンカレッジに大きな冗長性を与え ることになり、結果として、たとえ斜め滑り断層運動 (Oblique-slip fault movement) が起きたとしても耐え得る 構造となった. 大地震時の2次断層に対する構造安全性 は、700×1400×130 m 範囲の地盤モデルを用い、地中 の下層に幾つもの想定断層ずれを発生させてその影響を確 認した FEM 解析 (PLAXIS 3D を使用)をはじめとした 複数の検討によって保証されている.

鋼製主塔は、大地震時の塑性変形を許容する設計とした が、主塔断面の高さ 125 ~ 200 m 範囲が、地震時挙動が 支配的であった. 地震による橋軸方向の曲げモーメント は、NCE より再現期間が短い SEE の方が大きな力を発生 させる. 第7図に地震による主塔曲げモーメントを示す.

設計は EN1998-2 をベースにし,細部については,一部 イタリア基準を採用して,以下の四つのステップで行った.

- (1) 主塔断面の塑性耐力の評価
- (2) 主塔断面の回転変形耐力の評価
- (3) 主塔全体系としての挙動評価
- (4) 残留変形による影響評価

(b) アンカレッジ部完成写真

第6図 南側アンカレッジ Fig.6 South anchorage

Fig. 7 Bending moment in tower leg due to seismic events

実際に塑性変形するかどうかは鋼材の特性に依存する. このため,評価は設計上の降伏応力度,およびその値の 1.25 倍に対して行った.設計上の降伏応力度の 1.25 倍で のケースは,塑性変形が発生しないことによる影響(た とえば,ほかの構造部材への作用断面力が大きくなるな ど)を正しく評価するためである.「イズミット湾横断 橋」の主塔の場合,1.25 倍のケースでは塑性変形は発生 しない. 第8図に使用鋼材の降伏応力度と設計降伏応力 度との差を示す.16 mm 以上 40 mm 以下の厚板では設 計上の降伏応力度に対して,実際の降伏応力度は最も低 かったケースでも13%,平均では 20%以上高い値を示し ており,このようなアプローチが現実に即していることが 分かる.

設計上の降伏応力度を使用した評価では、最大の残留塑

性ひずみは 0.000 8 であった. この値は,初期不整として 設計上考慮している値よりも十分に小さく,地震時の塑性 変形が問題ないことが確認できた.

4. リスクアナリシス

「イズミット湾横断橋」は、以下の二つの思想のどちら かを満足するように安全設計された.

(1) Design strategy-1

偶発事故に対して,適用可能な規定,客先からの 特別な要求,広く一般に知られている事例を基に橋 やその付帯物の設計を行う.構造物を損傷させる可 能性のある以下のリスクを Strategy-1 の適用とする. ① 地 震

② 自動車荷重

③風

④温 度

⑤ 高水位および波

(2) Design strategy-2

適用可能な規定や事例がない特定のリスクに対し て、リスク許容値を定義し、リスクアナリシスを 行って評価・設計を行う.以下のリスクを Strategy-2 の対象とする.

- ①火 災
- ②爆発
- ③ 危険物の放出
- ④船舶衝突
- ⑤ 航空機衝突
- ⑥ 自動車の主塔・ハンガーへの衝突
- ⑦津波
- ⑧ 海底洗掘
- ⑨ ユーザーの死亡に関係する自然災害
- 10 ユーザーの死亡に関連する交通事故
- 4.1 方法論

リスクアナリシスは、以下の四つのステップに分けて実施した.

ステップ-1: 必要なデータの収集

- ステップ-2:全体的な危険有害物・事象の特定
- ステップ-3:特定した個々の危険に対するリスクアナ リシス.および関連するリスク軽減策検討
- ステップ-4:結果集約,および全体的なリスクアナリ シス

可能な限りトルコの現状を反映したが、関連データがな い場合には、ヨーロッパ諸国のデータを使用した.

リスクアナリシスは、構造物の詳細設計と同時進行で実施した.これら四つのステップの実施中、リスクアナリシスに最新設計状況を反映し、かつ、リスクアナリシス結果 が影響を与える箇所の設計に適切に反映されるように、リ スクアナリシスチームと構造設計チームとの意見・情報交 換を定期的に行った.

リスクアナリシスをとおしての安全設計を実施するに当 たって,次の2点をリスク対応の最重要方針とした.

- (1) 橋のユーザーへのリスクが、高速道路の同等の長 さおよび陸上の道路交通に対するものよりも、著し く大きくないこと、ただし、橋の特殊性と高速移動 を可能にする利便性を鑑みて、幾つかの追加リスク は許容する。
- (2) ある期間以上の橋の通行止めにつながる事故の可 能性は、類似の橋梁に対するものよりも著しく大き くないようにする。

評価は 20 年の供用期間, すなわち, 2015 年および 2035 年に対して実施した. なお, 本体の工事開始は, BOT のファイナンシャルクローズとリンクしているため, 詳細設計段階では供用開始時期を特定できない. そのた め, 詳細設計時(2012 年)に想定し得る最も早い供用開 始予定で評価した.

Design strategy-2 に対するリスク許容基準は、ALARP の原則(the risk shall be As Low As Reasonably Practicable) に従っている. **第9図**に ALARP の原則を示す. Design strategy-2 に関連するリスクが、許容上限リスク以下とな るように設計し、かつ、ALARP 範囲にあるリスクに対し、 ALARP の原則に基づき、必要な追加リスク軽減対応策を 施している.

具体的なリスク許容基準は、ユーザーリスク、社会的 ユーザーリスク、通行止めリスクに対して、それぞれ以下 のように設定した。

4.1.1 ユーザーリスク

ユーザーリスクすなわちドライバーのリスクは,橋の上 での"利用者の1km当たりの死亡率"で表現される. 許容上限値は、リスク対応の最重要方針に従い、トルコの 高速道路におけるドライバー死亡率の50%増しに設定し

第9図 ALARP の原則 Fig.9 ALARP principle

た. また, ALARP 範囲の下限値は, 許容上限値の 1/1 000 に設定している. 第2表にユーザーリスクに対す る許容値を示す.

4.1.2 社会的ユーザーリスク

社会的ユーザーリスクは、"ユーザーリスク×橋長× 1年間に橋を通行する人数"で表現される.つまり、許容 上限値は、ユーザーリスクに対するものと同じものを使う ことができる.

4.1.3 通行止めリスク

許容上限値はそれぞれの事故に対して設定されるが, 30 日以上の橋の全面通行止めとなるような事象の発生確 率を,それぞれのリスクに対して年間 1×10⁻⁴ 以下であ ることを設計要求とした.下限値は,上限値の 1/100,す なわち 1×10⁻⁶ である.

4.2 リスクアナリシス結果

ここでは、リスクアナリシスの事例として、火災・爆発

第2表 ユーザーリスクに対する許容値 Table 2 Criteria for user risk

項目	単 位	2015 年	2035 年
許容上限	死亡率/ユーザー×1 km	9.7×10^{-9}	1.3×10^{-9}
ALARP 下限	死亡率/ユーザー×1 km	$9.7 imes 10^{-12}$	1.3×10^{-12}

に対する検討を紹介する.

火災および爆発に対するリスクアナリシスは、以下の七 つについて実施した。

- (1) 橋の設備の火災
- (2) 自動車・航行船舶・近隣施設の火災
- (3) 自動車・船舶・航空機・近隣設備から流出した可 燃性物質による火災
- (4) 橋の設備の爆発
- (5) 自動車・航行船舶・近隣施設の爆発
- (6) 自動車・船舶・航空機・パイプライン・近隣設備 からの可燃性ガス流出による自由空間蒸気雲爆発
- (7) 自動車・船舶からの可燃性ガス流出によるBLEVE(ブレビー:沸騰液体蒸気膨張爆発)

このうち,船舶の火災・爆発および船舶の衝突・座礁に 関するリスクは,船舶関連の一連のリスクアナリシスにて 評価しているので,ここでは割愛する.

これらの火災・爆発によるユーザーリスクを第3表に、 火災・爆発による30日以上の通行止めリスクの評価結果 を第4表に示す.いずれも、道路上での火災・爆発によ るものが支配的であった. 第4表に示すリスク値"-" は、発生頻度が非常に低いとの評価結果が出て、リスクが

第3表 火災・爆発によるユーザーリスク Table 3 User risk due to fire and explosion

Table 5 User fisk due to file and explosion						
リスク項目	単 位	2015 年	2035 年			
自動車からの可燃物による火災	死亡率/ユーザー×1 km	$7.3 imes 10^{-11}$	2.0×10^{-10}			
パイプラインからの火災・爆発	死亡率/ユーザー×1 km	$2.1 imes 10^{-12}$	3.8×10^{-12}			
ガス・タンカー船からの爆発	死亡率/ユーザー×1km	$7.3 imes 10^{-15}$	1.3×10^{-14}			

第4表 火災・爆発による 30 日以上の通行止めリスク **Table 4** Disruption risk due to fire and explosion

リスク項目	年	危険物車両火災・爆発 (リスク/年)	重量積載物車両火災 (リスク/年)	船 舶 (リスク/年)	パイプライン (リスク/年)		
2 オドトンガール※提復	2015	0	-	$2.0 imes 10^{-7}$	-		
3 平以上ハンカー八火頂傷	2035	0	-	3.7×10^{-7}	-		
マインケーブルル※出作	2015	1.8×10^{-5}	9.6×10^{-7}	-	-		
メインケーノル八火頂湯	2035	4.9×10^{-5}	3.5×10^{-6}	-	-		
· · · · · · · · · · · · · · · · · · ·	2015	$8.0 imes 10^{-6}$	2.9×10^{-7}	1.0×10^{-7}	-		
土 冶 八 八 損 惕	2035	2.2×10^{-5}	1.0×10^{-6}	1.7×10^{-7}	-		
** 副 华 小 *** 培 梅	2015	-	-	3.3×10^{-7}	-		
補 剛 桁 火 灭 損 湯	2035	-	-	$6.0 imes 10^{-7}$	-		
* + * ~ ~	2015	0	-	-	-		
個内部での火火	2035	0	-	-	-		
道路上での爆発	2015	0	-	-	-		
	2035	0	-	-	-		
振山如っの堤及	2015	0	-	0	0		
	2035	0	-	0	0		
2 页 4 牌 改	2015	-	-	1.1×10^{-8}	4.5×10^{-7}		
ての他爆発	2035	-	-	2.1×10^{-8}	8.1×10^{-7}		

発生した際の影響度を評価するまでもなく影響度を無視で きると結論付けたものである.

第3表および第4表から明らかなように、火災・爆発 によるユーザーリスクのうち約98%、30日以上の通行止 めリスクの約90%が、道路上の危険物に起因する火災に よるものである。

4.3 追加リスク軽減対策

「イズミット湾横断橋」では、想定し得るすべてのリス クで許容上限値を満足したが、ここでは、ALARP 範囲の リスクに対しての追加リスク軽減対策について説明する。

第3表に示す火災・爆発によるユーザーリスクおよび 第5表に示す30日以上の通行止めリスクまとめから, 道路火災・爆発によるリスクが支配的であることが分か る.さらに,第4表に示す火災・爆発による30日以上 の通行止めリスク評価結果から,危険物車両の火災・爆発 による主塔,メインケーブルの損傷が支配的であるといえ る.このことから,「イズミット湾横断橋」では, ALARPの原則に従い,主塔およびメインケーブルの危険

第5表 30 日以上の通行止めリスクまとめ Table 5 Summary of disruption risk

リスジ	ク項目	単 位	2015 年	2035 年
航空相	幾 衝 突	リスク/年	-	-
船舶	衝 突	リスク/年	$2.2 imes 10^{-6}$	5.7×10^{-6}
船舶火	災・ 爆 発	リスク/年	$6.5 imes 10^{-7}$	$1.2 imes 10^{-6}$
道路火	災・ 爆 発	リスク/年	$2.7 imes 10^{-5}$	$7.6 imes10^{-5}$
パイプラ	イン事故	リスク/年	$4.5 imes 10^{-7}$	$8.1 imes 10^{-7}$
	地滑り	リスク/年	極 小	極 小
	津 波	リスク/年	$<1.0\times10^{-4}$	$< 1.0 \times 10^{-4}$
自然災害	海底洗掘	リスク/年	$<1.0\times10^{-4}$	$< 1.0 \times 10^{-4}$
	豪雨	リスク/年	$<1.0\times10^{-4}$	$<1.0\times10^{-4}$
	その他	リスク/年	極 小	極小
合	計	リスク/年	$< 3.3 \times 10^{-4}$	$< 3.8 \times 10^{-4}$

物車両火災・爆発に対するリスク軽減対応策を実施した. 以下に主塔に対する対策概要を説明する.

詳細設計時, ADR (欧州危険物国際道路輸送協定)の 分類において, どのような通行規制が橋に適用されるか不 明であったため, ADR Class 1 のみ通行を規制するとの 前提で検討を進めた.後日,供用直前に詳細が確定し,現 在は ADR Class 4 までの通行を規制して運用されている. すべての ADR Class を運ぶ車両に対する Class ごとの比 率を**第6表**に示す.「第2 ボスポラス橋」の実績を基に, 通行規制の違いを考慮した補正を行った.なお,検討にお いては,すべての ADR Class を運ぶ車両には先導車は付 かず,かつ,終日通行可能であると仮定した.

車両火災・爆発による主塔,およびメインケーブルの損傷 のなかで,対象となる事故は重量積載物車両火災およびハ イドロカーボン火災(ジェットおよびプールそれぞれ)であ る.しかし,供用時には,前述のように ADR Class 1~4 の通行が規制されているため,ここでの対策は危険物を搭載 していない重量積載物車両火災に対してのみが対象となる.

危険物を搭載していない重量積載物車両の火災モデルは, ヨーロッパの UPTUN プロジェクト (Upgrading Tunnel Project)によるノルウェー・Runehamar トンネルでの大 規模火災実験結果を基に,熱発生率 200 MW,継続時間 を約 30 分 (2 000 秒)とした.一般に,危険物を搭載し ていない重量積載物車両によって発生する火災は,鋼部材 に対してプール火災と同様のインパクトがあるとみなせ る. 200 MW の火災は,石油タンクの 50 mm 孔から漏れ る 50 m² のプール火災と等価である.

第 10 図にプール火災による炎の高さ・水平到達長さを 示す.風速 2 m/s, 5 m/s および 10 m/s について計算し た.風速が速くなれば,炎の高さは低くなり,水平方向の

第6	表	ADR Clas	s	ごと	の比率	<u>K</u>
Table 6	Со	ntribution b	v	each	ADR 0	Class

	ADR	Class			単 位	第 2 ボスポラス橋	ゲブゼ-イズミル高速道路	イズミット湾横断橋
1	爆	発		物	%	通行禁止	1	通行禁止
2	ガ			ス	%	通行禁止	6	1*1
3	可燃	* 性	液	体	%	70	65	70*1
4	可燃	* 性	固	体	%	1	1	1*1
5	酸亻	匕性	物	質	%	1	1	1
6.1	毒	劇		物	%	3	3	3
6.2	病质	〔 菌	物	質	%	通行禁止	1	1
7	放身	† 性	物	質	%	通行禁止	1	1
8	腐貧	て性	物	質	%	17	15	16
9	その	也有害	医性物	物質	%	2	1	1
1~	9の 糸	目合	わ	せ	%	6	5	5

(注) *1:開通直前に通行禁止が決定された.

Fig. 10 Flame height and horizontal reach

到達長さは長くなる.

道路上の火災によって,炎が主塔外面の1面に届く状態を検討する.該当部の主塔皮板の板厚は35mmであるが,炎にさらされる側およびその反対側の皮板の2000秒間続いたプール火災による板厚内部の温度時間変化を第11図に示す.

対策を施さない場合、プール火災にさらされてから 1000秒後には、炎にさらされている面の皮板はすでに 700~800℃に達する.この温度では、鋼材は常温の 15%の強度、10%の剛性しか発揮できない.吊橋の主塔 は、メインケーブルからの非常に大きな圧縮力を常に受け るが、主塔の圧縮耐力は、軸方向、および直交方向の補剛 鋼板によってもたらされており、それらは面外変形に非常 に影響される.火災による温度上昇で伸びが鋼板に発生す るが、大きな軸方向圧縮力および周辺の常温(に近い) のパネルに拘束されるため、この伸びは面外への座屈とい う形で現れ、結果として全体の耐力低下を招く.残存圧縮 耐力が作用力を下回ると、主塔の倒壊、すなわち、橋が崩 壊する.これらを踏まえて、ALARPの原則によって、耐 火能力を向上させる対策を施すことにした.

要求性能として,道路面から 25 m 高さまでの道路に面 した主塔外面(3面)が,1000~1200℃の炎に2000秒 間さらされても鋼材温度が150℃を超えないこととした. この耐火策を施すことによって,該当箇所で火災があった としても,橋の全面通行止め期間を1週間未満に減らす ことができる.

第11 図 プール火災による 35 mm 板厚内部の温度変化 Fig. 11 Temperature vs. time for 35-mm tower steel plate exposed to pool fire

耐火策として,適用しやすさや将来の維持管理・更新を 考慮して,耐火塗装を採用した.該当箇所には,エポキシ 系膨張耐火塗料(合計膜厚:5700µm)を塗布した上に, 一般外面と同じポリウレタン塗料(膜:60µm)を塗布し て,見た目の統一感を出すようにした. 第12図に主塔に 対する耐火塗装を示す.

5. 主要構造物の設計

第13 図に橋梁の全体図を示す.本橋梁は海底40mの 深さに据えられた主塔基礎,その上に立つ主塔,ケーブル を定着する両端のアンカレッジ,そして道路面を構成する 補剛桁とそれを吊るメインケーブルから構成される.

5.1 主塔基礎^{(3),(4)}

主塔基礎の設計で考慮し,かつ解決すべき項目は,主に 以下に示す 6 項目である.

- (1) 軟弱な地盤
- (2) 大地震地带
- (3) 大型船舶衝突
- (4) 大水深への沈設作業
- (5) 短い建設工期
- (6) 海洋環境での耐久性

このうち、軟弱な地盤上での免震設計についてはすでに 概説したのでここでは割愛する.

イズミット湾には工場が多数あり,また,湾の奥には海 軍基地があるために,多くの大型船舶が「イズミット湾横

第 12 図 主塔に対する耐火塗装(単位:mm) **Fig. 12** Tower fire protection paint (unit:mm)

断橋」の下を通過する.大型船舶航行は年間約 20 000 隻 であり,大きなものでは 180 000 DWT の石油タンカーや 90 000 DWT のコンテナ船がある.そのために,橋の下に は幅 1 000 m,高さ 64 m の航行用クリアランスが設定さ れているが,それに加えて,主塔基礎に船舶が衝突するア クシデントを考慮した設計を行った.既存航行データおよ び将来の周辺を含めた工業地域の変化を考慮したリスクア ナリシス結果によって船舶衝突シナリオを設定し,衝突荷 重,範囲を設定して,構造物の設計に適用した.

コンクリートケーソンは幅 54 m. 奥行 67 m. 高さ 15 m であり、その上に外径 16 m、厚さ 1.2 m の 2 基の 円筒形の鋼コンクリート合成殻のシャフトが載る、シャフ ト上部には鋼製主塔との接合部となる基礎土台が EL. + 10 m まであり、二つのシャフトはコンクリートの梁(タ イビーム)で連結されている. 主塔基礎は,水深 40 m の海底の上に立つが、コンクリートケーソンおよび鋼シャ フト(コンクリート打設前)は現場近くに準備したドラ イドック、ウェットドックで建設・一体化した、それを架 橋地点まで曳航・沈設させたのち、シャフト内のコンク リート打設、およびその上の基礎土台、タイビームを現場 施工した. 沈設は. コンクリートケーソン内の小部屋 (コンパートメント)への水の注入管理によってバラスト 調整しながら行った. 第 14 図にコンクリートケーソンバ ラスト用コンパートメント区分を示す。沈設時には、コン クリートケーソン上面が水面下に入る瞬間が最も安定性が 低くなるが、より安全な沈設作業のために、主塔基礎を意 図的に傾けた状態で沈設した.第15図に主塔基礎の沈設 を示す.コンクリートケーソンの壁は、このバラスト調整 時の水圧による影響も検討され、一部はこの状態が支配的 となって壁厚を決めている.

耐久性に配慮し、シャフトの海中部には電気防食を施 し、飛沫部についてはステンレス鋼を貼り付けることで防 食性能を向上させた.

5.2 アンカレッジ⁽⁵⁾

アンカレッジはケーブルの力に対して自重で抵抗する重 力式であるが,地盤状況などがそれぞれ異なるために,北 側と南側では異なったコンセプトを採用した.

北側アンカレッジ部は、比較的良好な石灰岩盤が地表面 近くまで達していたため、この岩盤に一部が埋め込まれた 形とし、掘削は 33 × 50 m 範囲を深さ 22 m まで行った. アンカレッジのサイズをよりコンパクトにするために、ア ンカレッジの上のトランジッションスパン(単径間箱桁) の橋脚位置を調整し、その反力もケーブルの力に対する抵 抗力として付加している.

南側アンカレッジは、前述のように2次断層の影響で アンカレッジとサイドスパンピアを,厚さ16mの堅固な スラブを介して一体化している. このスラブの施工のため に、地下 15 m までの掘削が必要であったが、アンカレッ ジ施工位置は埋め立てて準備した場所であり、軟弱な地盤 条件のうえ、掘削時の大きな側圧に対して、いかに掘削量 を抑え、安全で早い施工が可能な構造とするかが課題で あった. 掘削に当たっては、深さ 28 m 前後にある粘土層 までコンクリート壁を貫入させ、かつ、コンクリート壁の アーチアクションによって土圧に耐え、地中アンカーなど を必要としないシンプルな支保構造として、二つの円を 使ったギター型にダイアフラムウォールを施工した. 第 16 図に南側アンカレッジ,2 重円ダイアフラムウォール を示す. この構造によって、掘削量を少なく抑えたことに 加え、2 重円形部には円が交差する位置の中間サポートの みで掘削時の安定を保てるため、作業性向上・工期短縮に

第 14 図 コンクリートケーソンバラスト用コンパートメント区分
Fig. 14 Caisson compartment for ballasting

第15図 主塔基礎の沈設 Fig.15 Sinking operation for tower foundations

第 16 図 南側アンカレッジ、2 重円ダイアフラムウォール
Fig. 16 South anchorage, dual-circular diaphragm wall

大きく寄与した.

5.3 主 塔

第17図に主塔断面を示す。鋼製主塔は高さ236.4 m で、-40 mの海底に据えられた主塔基礎に、水面上10 m の位置でアンカーボルトによって固定されている。主塔は 1:80の傾きをもつ2本のレグおよびその間を結ぶ中間部 および上部の二つのクロスビームから成る。レグは、耐風 安定性を高めるための隅切り断面を有する箱構造であり、 製作・架設の条件から、高さ方向に22個のブロックに分 割され、12 段目より上については、さらにブロックを 4 枚のパネルに分割している.これは、海上+146 m まで は大型フローティングクレーンでのブロック架設を行うの に対し、それより上では、中間部クロスビーム上に据えた クライミングクレーンでパネル架設を行うため、そのク レーン能力によって決めたものである.ブロック間の継手 は、リブは高力ボルトによる摩擦接合、外板は完全溶込み 溶接と、複合構造を採用している.12 段目より上のレグ のパネル間の長手方向の接合は、高力ボルトによる摩擦接 合である.

また,風洞試験において,供用時に渦励振による面外 1 次振動の発生リスクが確認されたため,14 段ブロック (EL. + 170 m)に IIS の AMD (Active Mass Damper)を 設置し,制振を行っている.この AMD は,架設時の制 振にも使用した^{(6),(7)}.

5.4 メインケーブル

ケーブル架設期間の短縮および施工性の観点から PPWS (Prefabricated Parallel Wire Strand)工法を採用し た. **第 18 図**にメインケーブル断面を示す.メインケーブ ルの素線強度は fu = 1 760 MPa で、各ストランドは素線 径 5.91 mm のめっき素線 127 本で構成される. PPWS は、それぞれメインスパンで 110 本、サイドスパンでは エキストラストランド 2 本を含む 112 本の構成となって いる.

アンカレッジにおけるメインケーブルの定着構造は,アン カレッジ躯体内を貫通するように設置した PC (Prestressed Concrete)ストランドで躯体に定着された定着版(クロス ヘッドスラブ)に,テンションロッドでストランドのソ ケットを定着する構造を採用しており,一つの定着版に 2本もしくは4本のストランドを定着する配置としてい る.PCストランドを定着しているアンカレッジ躯体側背 面には,定着時に使用したスペースをメンテナンス用のス ペースとして残すことによって,PCストランドが損傷し た場合にも取換えが可能な構造とした.第19図にアン カー部を示す.

防錆方法として,乾燥送気システムを採用している. ケーブル一般部については,S字ワイヤによるラッピング の上に塗装することによって気密性・水密性を確保する構 造とした.アンカレッジ内部も,バックチャンバー,PC ストランドを含め,空間全体を乾燥送気システムで除湿し ている.**第20図**にバックチャンバー内のPCストランド 乾燥除湿装置を示す.

第 17 図 主塔断面(単位:mm) **Fig. 17** Main tower (unit:mm)

5.5 補剛桁

第 21 図に補剛桁断面を示す.補剛桁は,高さ 4.75 m,幅 30.1 m の鋼床版六角扁平箱桁断面であり,両端に幅 2.75 m の維持管理用通路を有する.耐風安定性を考慮し,かつ,「第 1 ボラポラス橋」および「第 2 ボスポラス橋」の外観を尊重したデザインを採用している.標準ブロック長さは 25 m である.

補剛桁の設計においては、主にバフェッティングの影響
を含めた ULS(Ultimate Limit State:終局限界状態)が
支配的であり、地震による影響は小さい、一方で、100 年

の疲労寿命が鋼床版の設計に与える影響は大きく, EN に 従った疲労照査のほか,1日20万台以上の交通量がある 「第2ボスポラス橋」の実測モデルを用いた照査によっ て,板厚決定や細部設計を行った.

重量および溶接量の削減など製作性の向上のため、ダイ アフラム間隔は5mと標準的な間隔より広くする一方で、 疲労設計への影響を考慮し、鋼床版板厚は14mmとし、 かつ、トラフの断面を大きくして十分な剛性を確保した. 使用鋼材は、鋼床版板厚を一定とすることを目的に、S355 をベースとしながら、桁端部および主塔付近ではS420、

第18図 メインケーブル断面(単位:mm) Fig. 18 Main cable section (unit:mm)

(b) PPWS ソケット・クロスヘッドスラブ

第19図 アンカー部 Fig. 19 Main cable anchorage

第 20 図 バックチャンバー内の PC ストランド乾燥除湿装置
Fig. 20 Dehumidification system for PC strands

S460 を採用している.

皮板およびトラフの継手部は完全溶込み溶接を基本としているが、鋼床版トラフの現場継手部は強度区分 10.9 の M24 ボルトによるボルト接合を採用した.また、標準ダイアフラムである CHS (Circular Hollow Section)によるトラス構造のクロスフレームとの継手部は、工場での組立て効率を考えて、強度区分 10.9 の M30 ボルトによるボルト接合を採用している.施工性向上のため、トラフ継手

部は母材・添接板ともに、トラス継手部は母材のみに拡大 孔を採用した。

5.6 舗装および付帯設備

この橋梁の舗装は、防水層としてプライマー、メンブレン、タックコートの上にマスチック 3 cm + 砕石マスチック 7 スファルト 3 cm とした.

契約範囲には付帯設備として,照明,航空・航路障害 灯,電源設備のみではなく,交通のオペレーションに必要 な統合管理システム (SCADA: Supervisory Control And Data Acquisition),消火設備,セキュリティシステム, SHMS (Structural Health Monitoring System)やコント ロールビルディング建設,維持管理に必要なケーブル・主 桁・主塔の検査車なども含まれている.

電源設備は,橋の重要性から,南北両アンカレッジ位置 にサブステーションを有し,商用電源からの電気供給が片 側で止まった場合には,残っているサブステーションがす べての電気供給を担い,南北両方の電源供給が止まった場 合にはジェネレーターによる稼働,さらにはジェネレー ター稼働が止まった場合に備えて,72時間にわたって橋

の運営に最低限必要な設備(道路照明を除く)への電気供 給が無停電電源装置(UPS: Uninterruptible Power Supply) によってできるようになっている.

SHMS は、吊橋の設計性能・設計寿命に関する各種情報を継続的に記録するためのセンサー、コントロールビル ディング内にある SCADA、コントロールルーム(第22 図)での常時監視、あらかじめ設定した管理制限値に対するアラート発信、および橋梁維持管理計画の策定・更新 で構成されている。

6. 結 言

「イズミット湾横断橋」では、プロジェクトに即した包 括的な Design basis を独自に策定したうえで、設計・施 工を行った.本稿では、そのなかの特徴的な事例として、 耐震設計およびリスクアナリシスについて概説した.早期 の交通開放が第1優先である BOT プロジェクトにおい

第 22 図 コントロールルーム Fig. 22 Bridge control room

て,建設工期に最も大きな影響力をもつ施工数量を抑え, かつ,施工性の高い構造であることも満足するように設計 を行った.非常に短い期間,かつ一部施工との同時並行で 設計が進められたなか,架橋地点の状況を分析・予測し, 適切な安全・安心・品質をもつ橋を,広範囲・長期的な視 野をもちながら,どのように設計していったか,主要構造 物ごとに概説した.

2013 年 1 月に着工した工事は,2016 年 7 月 1 日に交 通開放を迎えた.大規模橋梁を有する Design & Build プ ロジェクトの設計においては,多岐にわたるアイテムを広 い視野で判断しながら,時に斬新・大胆なアイデアの導入 が欠かせない.また,幾つもの制約のなかで,各設計検討 事項に対して,数ある選択肢のなかから進むべき道を一つ に選んでいく行為は,設計の醍醐味の一つではあるが,決 まった正解がないために,常に悩みを伴う作業でもある. 今後,世界的には BOT や Design & Build プロジェクト が増えていくと考えられるが,このようなプロジェクトに 参画するに当たって,本稿が参考の一助になれば幸いであ る.

最後に,「イズミット湾横断橋」においても, IHI グ ループの広範囲な技術を随所に適用したが, 同種のプロ ジェクトにおける IHI グループ内の技術適用, 協力に対 する改善の余地, 将来のさらなる拡張の可能性は大きく, 今後の課題事項としたい.

— 謝 辞 —

本プロジェクトの遂行に当たり, NOMAYG JV および 株式会社長大を含む 3 社から成る KGM(トルコ道路庁) コンサルタント JV の多大なるサポートと建設的な技術議 論への協力に深く感謝いたします.

また,設計コンサルタント COWI で,5 か国のオフィ スにまたがり,繁忙期には200人近いエンジニアから成る 多国籍設計チームを率いた Kent J. Fuglsang, Lars Jensen, Flemming Michael Pedersen,および IDC や各種調査・実 験などで本橋の設計に関わった10か国以上の社内外のす べての方々の個人・組織としての多大なる貢献に対して, ここに記し,敬意と感謝を表します.

参考文献

- M. Yanagihara, T. Kawakami et al. : Izmit Bay Suspension Bridge – Overview of the Project Elegance in Structures (2015.5)
- (2) B. Foged, J. S. Steenfelt et al. : Geotechnical design of the Izmit Bay Suspension Bridge Elegance in Structures (2015.5)
- (3) F. M. Pdersen, S. C. Christensen et al. : Izmit bay Suspension Bridge – Deep water tower foundations

Providing Solutions to Global Challenges (2015. 9) pp. 1 - 8

- (4) M. Inoue, M. Durmaz, T. Shima et al. : IZMIT Bay Suspension Bridge – Settlement of Tower foundation: Monitoring and Consideration Elegance in Structures (2015.5)
- (5) F. M. Pdersen, S. C. Christensen et al. : Izmit bay Suspension Bridge – Main cable anchorages Providing Solutions to Global Challenges (2015.9) pp. 2 125 – 2 132
- (6) M. Inoue, T. Kawakami, Y. Takai and O. Berber : IZMIT Bay Suspension Bridge – Finding and Consideration for Vibration control of Tower by Active mass damper Providing Solutions to Global Challenges (2015.9) pp. 2 177 – 2 124
- M. Inoue, Y. Yamasaki, S. Yamamoto et al. : IZMIT Bay Suspension Bridge – Vibration control of Steel tower Engineering for Progress Nature and People (2014.9)