Development of Technology for Monitoring of CO₂ Emissions Over Wide Areas Using a Laser System

伊	澤		淳	技術開発本部基盤技術研究所応用理学研究部 主查	博士(〔工学〕	
大	海	聡-	一郎	技術開発本部基盤技術研究所応用理学研究部			
稲	元	智	行	株式会社 IHI エアロスペース 基盤技術部基盤技術室			
久侈	よ田	伸	彦	技術開発本部総合開発センター化学システム開発部	部長	博士(工学	之)

レーザ技術を用いて CO₂ の漏えい検知を遠隔で広範囲(数 km)に行う装置の開発を進めている.今回,試作した小型可搬型の計測装置によって大気中および燃焼排気ガス中の CO₂ 検出試験を行った.当社独自開発の装置によって,横浜事業所内屋外の距離約 130 m までの大気中の CO₂,および燃焼プラントの燃焼排気ガス中の CO₂ 検出 に成功した.本稿では,レーザによる CO₂ 漏えい検知技術の概要,当社の技術の特長および装置特性,本装置を用いた CO₂ 検出試験結果について述べる.

We are developing a system for the remote monitoring of CO_2 across wide areas (several kilometers) using laser technology. We have measured atmospheric CO_2 and that contained in combustion gases using our compact and portable test system. We were successful in measuring atmospheric CO_2 and that contained in exhaust gases from a combustion plant over a distance of 130 meters by using our original system that is based on a commercial laser. In this paper, we provide an outline of CO_2 monitoring using a laser system, and describe its innovativeness and characteristics, together with the results of CO_2 measurements using it.

1. 緒 言

昨今,地球温暖化による環境への深刻な影響が懸念されている.温暖化の原因は,化石燃料の燃焼などの人類による大量排出によって CO₂の大気中濃度増加が有力であることが最近の研究で明らかになってきている. CO₂の濃度増加の抑制,すなわち排出量削減のため京都議定書が締結され,先進国を中心とした世界各国でこれに基づくさまざまな CO₂ 削減の取り組みが行われている.

このような状況下で, CO₂ の発生源であるボイラなど から排出される CO₂ を分離回収し,地中・海中に貯蔵す る技術 (CCS)の研究が進められている. CO₂ を固定化 することによって環境への影響をなくし,排出そのものを 削減したとみなす手法である.将来 CO₂ の排出規制が厳 しくなり,ボイラのような大規模 CO₂ 排出施設において 回収義務が課される可能性は非常に高い.

一方,これらのプロセスにおいては安全・環境の観点から広域(>km 周囲)に漏えいを監視する手段・装置が必要である. 第1図に広域 CO₂漏えい検知技術の概念を示す.特に貯蔵設備は広大であるため,従来のサンプリングでは常時監視は困難であり,検知器によるピンポイント計測でも広域なエリアすべてを常時監視するためには、装置

第1図 広域 CO₂ 漏えい検知技術の概念 Fig. 1 Wide-area CO₂ emission monitoring

が多数必要になり現実的ではない.これに対し,レーザ を用いたリモートセンシング技術によって,CO₂をはじ めとするガス成分を広域に検知・計測する機器は長年研 究されている.レーザによるガス検知の方式は,① 光吸 収② ブレークダウン ③ 非線形光学(ラマン,多光子ほ か),などの方式が一般的である.なかでも,CO₂の漏え い検知においては光吸収を用いた方式が用いられている.

光吸収方式の原理を第2図に示す. CO₂などガスの吸 収波長の微細構造に同調し,吸収線の1本と同程度の帯

第2図 光吸収によるガス濃度計測の原理(差分吸収) Fig. 2 Principle of measurement of gas concentrations using optical absorption (Differential absorption)

域幅の光をガス中に入射し, 散乱光を検知する. このと き, 光はガスによって吸収され, 減衰する. このときの透 過率 *T* はランベルト・ベール則によってガスの濃度 *N* お よび存在する距離(光路長 *L*)とガス種別および波長に 基づく固有値(吸収係数 α)と関係づけられる. 関係式 を(1)式に示す.

T=exp(-αNL) (1) これによって、ガスの種別と濃度(光路長積分値)を 推測できる. さらに、大気中のほかの減衰要因(粉じん など)の影響を排除するため、通常は対象ガスで吸収す る波長(ON)としない波長(OFF)を切り替えて、その 減衰量の差分から特定のガスの濃度を算出することができ る. この方式は差分吸収方式と呼ばれており、ガス種別に よって異なる特定の吸収波長に同調させたレーザ光源が必 要になる. 一方で、定量化が容易であること、信号強度が 他方式に比べ高く長距離計測に有利であること、といった 利点がある.

CO₂をはじめとするガス成分の計測においては、赤外 光領域(>0.75 μm)に多数の吸収波長が存在する.赤外 光領域の計測技術は環境分野、エネルギー分野、セキュリ ティ分野をはじめ多種多様な応用の可能性を秘めている が、発生および検知を行うための実用的なデバイス(光 源、受光素子など)の開発が紫外・可視域に比べ遅れて おり、これを用いた計測システムの実用化も進んでいな かった.しかし、この数年で研究が急速に活性化してお り、近い将来には実用化開発の花形になると予想される.

2. レーザによる広域 CO2 計測における課題

CO₂の吸収波長は近赤外光以上の波長域に多数存在す るが、大気中の広域(長距離)計測における最大の妨害 要因である水蒸気の吸収線を回避し、かつ、実用的な吸収 量をもつ波長としては、1.6 µm 帯、2 µm 帯、4.3 µm 帯 がある.これらのうち 1.6 µm 帯は高出力なレーザ光源や 受光感度の高い検知器が最も入手しやすくハードウェアと しての完成度が高い.しかし、三つの波長帯のなかで最も 吸収量が小さく、高い距離分解能や微量ガスの検知が難し い.一方で、4.3 µm 帯は吸収量が最も強く近距離/高距 離分解能、高感度検知に向いているが、光源・検知器が未 発達で、素子の冷却が必要であるなど機器の扱いに課題が ある.筆者らは、システムとしてのバランスを考慮して、 二つの波長帯の中間的特性をもつ 2 µm 帯を採用した.

第3図に差分吸収方式による CO₂ 検知装置システム の一例を示す.この装置は本研究に先立ち,計測原理の 社内確認のため試作したものである.狭帯域パルス YAG レーザの3次高調波励起の OPO(光パラメトリック発 振器:いずれも市販品)によって発生した可視光(波長 0.6134µm)の2次高調波によって,0.3067µmの紫外 光を得ている.一方で,前述の YAG レーザに残存する2 次高調波(0.532µm)から4次高調波(0.266µm)を発

第3図 差分吸収方式による CO₂ 検知装置システムの一例 Fig. 3 Example CO₂ detection system using the differential absorption method

生させ,波長 0.266 µm と波長 0.306 7 µm からの差周波 発生によって CO₂ の吸収波長(中心波長約 2.004 µm) の狭帯域光(線幅 0.04 nm:計算値)を発生させている. 市販されているレーザをベースとして,当社で赤外光発生 部の改良を加えたこの装置による室内基礎試験によって, CO₂ の検知濃度 100 ppm 以下(100 m 換算)を確認し た.また計測距離においても,得られたデータに対して信 号強度を距離二乗則(信号強度は距離の二乗に反比例す る)のスケーリングをすることによって,集光レンズの 設計修正など装置の最適化によって数百 m 以上の計測距 離が見込めることが明らかになった.

しかし,このような装置は、① 大規模かつ複雑な装置 でコストも1 台数千万円~1 億になる② 複雑な装置は故 障のリスクが高いため設置環境(温度,湿度など)に制 約を受ける③ メンテナンスに高度な技術者が一つの貯留 設備をカバーするために、数台から十数台が必要である, ことなどを考慮すると,監視装置としての許容コストに見 合わない.これらの装置はいずれも高度な計測用途を目的 としており,前述の用途への応用は難しい. CCS 貯留設 備の漏えい検知への適用を想定した場合,以下のような装 置が望ましい.

- ・1 台で >km の周囲をカバーできること.
- ・想定コストは1~2千万円/台であること.
- ・メンテナンスは現場作業員が容易に可能であること.
- ・小型可搬型であること.
- ・最低検知濃度は 100 ppm オーダ (100 m 換算で) で あること.

設置型の装置を想定した場合は必ずしも小型可搬型は必 須ではない.しかし,設置される場所に制約(寸法,耐 荷重など)を受ける場合や,さまざまな場所でのフィー ルドテストなども想定すると小型可搬型であることは運用 上重要になる. CO₂計測においてこのようなシステムを 実現するためのレーザ光源は市販品で利用可能なものが存 在せず,このシステムに特化した光源を別途開発する必要 がある.

3. 小型可搬型装置の試作と室内試験結果

従来の方式における課題を解決するため,筆者らは広 帯域光源(数 nm 程度)による広域 CO₂ 計測装置を考案 し⁽¹⁾,装置の試作を行った⁽²⁾.従来型の狭帯域光源によ る装置に比べ検知濃度(濃度)の面で不利であるものの, 装置設計が容易であり,小型・低コストの装置が実現可能 である.また検知濃度についても、CO₂は大気中にも存 在する成分であり、漏えい検知にターゲットを絞れば検知 濃度に対する要求レベルは本装置において十分実現可能な レベルになる.

この装置を実現するに当たり、市販レーザを励起光源 にした OPO による赤外光発生装置を当社で開発した.こ の装置は市販品に対して波長可変範囲を制限しているほ か、広帯域の赤外光発生を前提としているため、狭帯域 化の機構が不要になるなど CO₂ 計測に特化した設計とす ることよって、小型・低コスト化を実現している. **第**4 図に本装置の原理実証試作機の概要を示す.市販のパル ス Nd:YAG レーザの 2 次高調波(波長 0.532 μ m,出力 20 mJ,パルス幅 5 ns,繰返し 10 Hz)を励起光とした OPO によって CO₂ の吸収波長である約 2.004 μ m を発生 させている.パルス幅は 10 ns,出力は最大 500 μ J,波長 線幅は約 5 nm (FWHM)である.

本装置の性能評価を目的として,室内における CO₂ 計 測(検出感度の検証,遠隔計測の検証)を実施した. 第5図に評価試験概要を示す.この試験は,装置からの距離 5mに散乱板としてプラスチック板を設置し,散乱光を検 知している.CO₂の濃度は,装置と散乱板の間に設置さ れた吸収セル内の CO₂の分圧(バランス N₂)によって 変化させている.

第6図に CO₂ 検出感度の検証結果(吸収量の濃度依存 性)を示す.縦軸の吸収量の対数値(吸光度: $-\log T$)が 横軸の濃度(100 m 換算)に比例して増加しており,(1) 式と整合している.また,この試験結果から,装置の検出 感度が 100 ppm 以下(100 m 換算)であることが実証さ れた.続いて遠隔の CO₂ の漏えい検知を実証するため, 遠隔計測試験を実施した.吸光度の距離依存性を測定する ことによって,空気中の CO₂ の検知を実証し,CO₂の純 ガスによって漏えい検知を実証した.

第7図に遠隔計測および漏えい検知の試験の概要を示 す.装置の距離 5~46 m 先に設置したついたてからの散 乱光を検知し,吸光度の距離依存性を求めた.また,漏え い検知を模擬するため,5 m 地点で解放空間に CO_2 (濃 度 100%)を漏えいさせ,そのときの吸光度の変化を併せ て測定した.漏えいは CO_2 ボンベによって計測中連続し て行っている.**第8**図に試験結果を示す.

漏えいがないときの吸光度は大気中の CO₂ によって距 離の増加に伴い比例的に増加している.また, CO₂ を漏 えいさせたときの距離依存性は,ない場合に対してベース ラインが高濃度方向にシフトしており, CO₂ 漏えい検知 の裏付けとなった.漏えいさせたときの吸光度が安定して

第6図 CO₂ 検出感度の検証結果 Fig.6 Results of verification of CO₂ detection sensitivity

いないのは,解放空間に漏えいさせた CO₂ の濃度および 体積(濃度分布)そのものが安定していないことによる ものと考えられる.

4. 屋外試験結果

この装置を用いて、屋外における CO₂ 検出の実証試験 を行った. 試験は、大気中 CO₂ および, 燃焼排気ガス中 の CO₂ を対象とした. **第9** 図は屋外大気中の CO₂ 計測 試験概要を示す. 試験は屋内試験の距離依存性試験と同様 に, 波長 2 µm の赤外光を屋外路上で水平に照射し, 距 離 130 m までの計測を行った. 赤外光の仕様は室内試験 と同一である. **第 10** 図に試験結果を示す. 室内試験と同 様に, 距離の増加に伴い線形的に吸光度が増加している. 絶対値については室内試験において取得した検量線から, 大気濃度と同程度の計測結果が得られている. しかし, 屋 外環境における妨害要因(水蒸気など)の影響が推測さ れるため, 今後, 精度の検証および向上のための装置改良 を行っていく. また, このとき計測された信号強度から, 本装置における計測距離は 1 km 以上のポテンシャルをも っことが推測された.

今後, さらなる計測によって距離1km以上の実証と最

第7図 遠隔計測および漏えい検知の試験概要 Fig.7 Remote measurement and emission detection

第9図 屋外大気中の CO₂ 計測試験概要 **Fig. 9** Atmospheric CO₂ measurement

長計測距離の検証を行っていく. さらに, 屋外における CO₂ 漏えい検知を模擬的に実証することと, この装置の プラントなどの漏えい検知への適用性を探るため, 燃焼排 気ガス中の CO₂ の計測を行った. **第 11 図**にその試験概 要を示す.

距離約 60 m 先の排気ダクトに照準を合わせ、ダクト本 体からの散乱光によってダクトから放出される CO₂ の濃 度を計測したものである. 第 12 図に試験結果を示す. こ の計測において距離分解能は得られておらず、光路上の積 分値であるため、別途計測した大気中の CO₂ 濃度を差し 引き、濃度計算をしたところ 3.15 ~ 12.6% · m と算出さ れた. この計測も解放空間における計測であるため、CO₂ の濃度分布の推測が困難であるが(風の影響によっても 変化する)、燃焼器からの排気ガス中の CO₂ 濃度は 20% 程度と推測されることから、排気ガスの拡散領域を数 m と仮定するとおおむね一致しており、妥当な計測結果とい える.以上の結果から、燃焼プラントの燃焼排気ガス中の CO₂ 検出を実証した.

(a) 照準画面

(b) 装置構成

第 11 図 燃焼ガス中の CO₂ 計測試験概要 Fig. 11 CO₂ measurement in combustion gases

(b) 自動計測による計測画面

(注)*1:計測距離が63mの平均値

第12図 燃焼ガス中の CO₂ 計測試験結果 Fig. 12 Results of CO₂ measurement in combustion gases

第 13 図 要素機能確認機概要 Fig. 13 System for verification of functionality

5. 結 言

温室効果ガスである CO₂ を分離回収する工程における 漏えいを検知することを目的とした,レーザによる広域 CO₂ モニタリング装置の試作を行い,原理実証および屋 内外での計測による性能評価を実施した.計測結果から, 本方式による広域 CO₂ モニタリング装置の実現性を確認 した.

現在は要素機能確認機(第13図)の製作と性能評価 を進めている。今後はこの装置による検出感度および計測 距離の向上,装置化に向けた各種機能の実証とフィールド 試験の蓄積を進めていく.

参考文献

- (1) 伊澤 淳ほか:社団法人レーザー学会学術講演会第 31 回年次大会 講演予稿集 2011 年 1 月
- (2) J. Izawa et al. : Proceedings of 2nd Oxygen Combustion Conference The IEA Greenhouse Gas R&D Programme (IEAGHG) (2011.9) p. 64