CIP-LSM を用いた高精度微粒化シミュレーション

High-Accuracy Numerical Simulation of Liquid Atomization using CIP-LSM

高	和	潤	弥	技術開発本部基盤技術研究所熱 · 流体研究部
松	野	伸	介	技術開発本部基盤技術研究所熱,流体研究部 課長 博士(工学)
加	納	康	仁	株式会社 IHI エアロスペース 基盤技術部
宇賀	神	裕	樹	株式会社 IHI エアロスペース 基盤技術部 主査

CIP-LSM は、流体解析に CIP-CUP 法を、界面追跡法に Level-set 法と MARS 法を協調させた HLSM 法を用いて 融合させた気液二相流解析手法である.これまで、二液スラスタやロケットエンジン燃焼室で採用されている衝突 噴流微粒化を対象に液体挙動の数値解析を行い、試験結果との比較検証を行ってきた.本稿では、これまでの検証 結果と、本手法の解析ソルバの開発状況について解説する.

CIP-LSM is a gas-liquid two phase flow analysis method with an interface tracking method combined with the CIP-CUP method for fluid analysis, and the Hybrid Level-set & MARS method for volume tracking. So far, numerical simulations and experiments on impinging jet atomization for bi-propellant thrusters and rocket engines have been conducted to validate its applicability to atomization. This article describes the validation results and development status for the CIP-LSM solver.

1. 緒 言

気液混相流の数値解析手法は、固定格子上で方程式を解 く Eulerian 的な解法(VOF法、フェーズフィールド法⁽¹⁾) と,任意の流れに乗った計算点で解く Lagrangian 的な解 法(SPH法: Smoothed Particle Hydrodynamics Method⁽²⁾, MPS法: Moving Particle Semi-implicit Method⁽³⁾)とそ の両方を組み合わせた解法(ALE法: Arbitrary Lagrangian and Eulerian Method⁽⁴⁾)でそれぞれ開発が進められてい る.解析対象に応じた手法を選択する必要があるが、気 液界面が自由に変形するような流れ場を取り扱う際は、 Eulerian の手法が用いられることが多い.しかし、界面形 状を詳細に追跡する必要があることから、界面形状を詳細 に定義できるスキームが必要になることや、計算コストが 大きいという欠点がある.

二液スラスタや液体ロケットエンジンでは,**第1図**に 示す二液スラスタ概念図のように,燃料・酸化剤の推薬微 粒化に衝突噴流微粒化方式が採用されている.微粒化した 推薬の挙動を評価することは設計上有益であるが,それを 試験で取り扱うのは,液体の毒性に加えて推薬の組み合わ せによっては自発着火性があるため簡単ではない.そこで 数値解析が有用になるが,微粒化のように変形する自由界 面を伴う流れを解析する場合,界面における表面張力効果 を正確に考慮する必要があり,このため界面曲率を精度

良く求めることが重要である. VOF 法(Volume Of Fluid Method)のみでは界面曲率を捕えるためには,詳細な メッシュが必要とされることから,計算コストが増大して いた. これを解消するため,界面追跡法として界面の形状 を解析的に再現する Level-set 法⁽⁵⁾を用いれば,計算コ ストを抑えて界面に働く力の精度を向上させることが可能 である. そこで界面追跡法に Level-set 法を採用し,界面 勾配も考慮して複雑な自由界面をもつ流れ場に対して有効 に働く CIP-LSM (Constrained Interpolation Profile based Level Set and MARS)が適した計算手法であると考えられ る.

本稿では CIP-LSM の手法を説明し,実際に衝突噴流微 粒化解析を実施して試験と比較検証した結果を示す.ま た, これまで行われている CIP-LSM の計算ソルバ(以下, ソルバ)の開発状況について紹介する.

2. CIP-LSM

CIP-LSM は、東京大学の姫野らによって開発された 二相流解析手法⁽⁶⁾である.流体解析には CIP-CUP 法: CIP-Combined Unified Procedure 法(CCUP 法)⁽⁷⁾を用 いて移流に対して密度差の不連続性を保ち,界面捕獲法 に Level-set 法 と MARS (Multi-interface Advection and Reconstruction Solver)法⁽⁸⁾を協調した HLSM (Hybrid Level Set and MARS)を用いている.表面張力の計算には CSF (Continuum Surface Force)法⁽⁹⁾が用いられている. CIP-LSM はこれらのスキームを**第 2 図**に示すような関係 で計算し、最終的に流れ場を解析している.

支配方程式には、均質二相流の Navier-Stokes 方程式を 用い、移動境界の位置と形状を特定する界面追跡法につい ては、識別関数(気液を識別するヘビサイド関数)の移 流方程式を解く、

第2図 CIP-LSM のスキーム関係図 Fig. 2 Relationship of schemes used in CIP-LSM

Level-set 法では, 界面からの法線方向距離を符号付で 表す距離関数 ϕ を定義する(**第3図**). ϕ は気体内部で $\phi < 0$, 液体内部で $\phi > 0$, 界面で $\phi = 0$ となるように定義 される値である. 界面の時間発展は, 距離関数 ϕ の移流 方程式

> $\frac{\partial \phi}{\partial t} + (\vec{u} \cdot \nabla) \phi = 0 \quad \dots \quad (1)$ *t* : 時刻 *u* : 速度ベクトル

を解けば良く,この移流方程式に対しても CIP 法を適用 する.さらに、ヘビサイド関数 H_{ε} を用いて各相を定義す る(**第3図**参照). H_{ε} は界面で長さ 2ε (代表格子幅の 1.5 倍から 3.5 倍)の遷移領域をもたせ、界面で状態量 を不連続にさせずに計算を安定化させている.なお、**第3** 章で示す結果では三次元計算のため識別関数を H_{v} と表現 する.

MARS 法は界面勾配を考慮した界面輸送手法であり, MARS 法の計算には界面形状保存性,体積保存性,連続 性に優れた手法である.界面からの法線ベクトルが必要 であり,法線ベクトルは Level-set 法で得られた値を使用 し,協調している.

流体解法には Yabe らによって提案された CCUP 法を 用いている.支配方程式を移流項,拡散項,音響項に分け て解き,時間進行させる.移流項計算に用いられる CIP 法は,2点スキームでありながら,格子点での値のほかに 微分値を保有して移流させ,密度差の大きい分布を鈍らせ

第3図距離関数と識別関数の定義⁽⁵⁾ **Fig. 3** Definition of Level-set and Heaviside function⁽⁵⁾

ることなく移流させることが可能である.

これまで, 第4図に示すような宇宙輸送機推薬タンク のスロッシング解析などに用いられてきているが⁽¹⁰⁾, 図 より液相の挙動が模擬できており,実現象を妥当に解析 していることが分かる.現在,本ソルバを用いてスラスタ (推進器)設計に適用するため,検証を実施している⁽¹¹⁾.

3. 衝突噴流微粒化の数値解析

3.1 解析対象と解析条件

本稿では、二液スラスタでも採用されている衝突噴流微 粒化を対象に解析を実施した.衝突噴流微粒化は、二つの 管路から噴射された液体同士が衝突し、液膜、液糸、液滴 へと気液界面の不安定性などのために液体が分裂していく

第4図 スロッシング解析例⁽⁹⁾ Fig. 4 Comparison between CIP-LSM result and experiment for sloshing phenomenon⁽⁹⁾

微粒化方式である. 第5図に衝突微粒化の例を示す. 衝 突後,液膜や密集したリガメント(液塊)が飛散する領 域が扇形となっていることから,それらはファンと呼ば れる. 噴流の慣性力と液体の表面張力の比で定義できる ウェーバ数 We なる無次元数が大きくなるにつれて微粒 化が強まる. 実機の場合, We が大きいため,微粒化が早 く,数値解析手法も複雑に変形する界面を追跡できる手法 が必要である.

計算モデルと格子を第6図に示す. 直方体モデルであり, 噴射部は速度入口条件を与えている. また, その際, 速度分布はつけていない. ほかの面は自由流出境界としている. 計算格子は直交格子となっており, 格子密度に対する検討は次章で示す.

試験・解析条件を第1表に示す.ソルバの適用性を確認 するため,径比・運動量比ともに大きな範囲を用いている. 表のファン傾き角度は,横側からファンを観察した際に, 傾いているファンの角度を示し,噴流の運動量保存式から 導かれる理論的な値である.なお,使用液体は水である.

同様の試験は、東京大学の設備を用いて実施され、高速 度カメラによる液体の可視化画像を本稿の比較対象として いる.

3.2 解析結果

第7図に CIP-LSM と VOF 法(汎用熱流体解析ソル バ Fluent ver. 13.0)の比較を行った.格子密度,計算条

第5図 衝突微粒化の例 Fig.5 Impinging jet atomization

第6図 計算モデルと格子 Fig. 6 Computational model and grid

			<u>^</u>			*			
125	H	畄 占	基準噴流	相手側噴流					
垻	н	中 匹		No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
噴 射 径		mm	1	2 (径比=2)					
運動	量 比	-		7.33	4.55	1.37	0.97	0.58	0.12
噴 射	速度	m/s	17.6	22.3	17.6	9.66	8.12	6.26	2.87
ウェー	バ 数 We	-	3 674	13 457	8 364	2 520	1 783	1 058	223
ファン傾 (理 ii	き角度 β 斎 値)	度		22.9	19.1	3.1	-2.7	-10.7	-25.0
						()).		. b	~

第1表 同種衝突噴流試験·解析条件
 Table 1
 Experimental conditions for like-on-like impinging jets

(注) We は次式で求める

 $We = \frac{\rho v^2 D}{1}$

 σ ρ :密度(kg/m³)

v : 噴射速度 (m/s)

D:噴射径(m) σ :表面張力(N/m)

第7図 CIP-LSM と VOF 法の比較 Fig. 7 Comparison between CIP-LSM and VOF method

件は両者で同じである.結果は、識別関数 $H_v = 0$ の等値 面で気液界面を表示したものである.結果から、VOF 法 は液膜が形成されるも、その後微粒化する傾向は見られな い.一方で、CIP-LSM は衝突後、液膜が形成され、液糸 に分裂し、さらに液滴に分裂する挙動が捉えられており、 微粒化現象の再現が可能となっている.この点で、VOF 法に対して大きな優位性があると考えられる.その理由 として、**第8** 図のファン中心断面でのレベルセット関数 ϕ の分布に示すとおり、気液界面(識別関数 $H_v = 0$ の部

第8図 レベルセット関数 ϕ の分布 **Fig. 8** Distribution of distance function, ϕ

分:黄色の破線)の形状と界面からの距離が詳細に表現 されていることが分かり,界面に働く表面張力の計算が高 精度に行われていると考えられる.

次に,径比2で運動量比を変化させた結果を第9図に 示す.運動量比が変化するとともにファンの傾き角度や下 流での微粒化の状態などが変化している.可視化結果で は、ファンの傾き角度などが良く再現できている.第10 図に傾き角を理論値,試験結果そして解析結果で比較した 衝突後のファンの傾き角比較を示す.この結果から,数値 解析結果はファンの傾き角度を正しく再現できていると考 えられる.

第11 図に格子密度の影響を示す.格子間隔 200 µm で

第10図 衝突後のファンの傾き角比較 Fig. 10 Comparison of fan angle after the impingement

(注) ()内の数字は運動量比を示す.

第9図 径比 2 で運動量比を変化させた結果 **Fig. 9** Results under various momentum ratio conditions with a diameter ratio of 2

(注) *1:運動量比が 4.5 の場合を示す.

第 11 図 格子密度の影響調査 Fig. 11 Effect of mesh density on the result

は、液膜から分裂した液滴の大きさが大きく、分裂方向 も異なる箇所が存在する.格子間隔が 100 µm, 80 µm と 小さくなるにつれ、液膜の破断距離が小さくなるほか、波 の間隔や微粒化した液滴の細かさなども可視化結果に近く なっていることが確認できる.衝突後の液膜の破断距離は 可視化結果の方が短いが、これは試験で生じるタンクの微 妙な圧力変動や、管路内で発生する速度分布などが解析で は模擬できていないと考えられる.今後は上流の現象も考 慮して詳細に実現象と比較検証する必要がある.

第12図に実際のスラスタを模擬した解析結果を示す. 図は気液界面を表示させている.3エレメントのセクタを モデル化し,噴射条件は運動量比を一致させた.本ツール

はこのようにファンの干渉やフィルム冷却との相互作用な どを考慮して、下流での質量流束分布や混合比分布を評価 できるようになることが期待される.

4. ソルバ開発状況

本ソルバは、多くの応用先に適用するため、現在でも開 発が進められている.たとえば、気液の速度差が大きい噴 射弁などの解析に対応させるため、これまで層流を仮定し た流れのみを解析してきたが、乱流場での流れ解析に対応 できるようにしている.また、これまで液体は1種類し か取り扱うことができなかったが、それを2種類まで取 り扱うことが可能になってきている.

第 13 図に異種ソルバによる衝突噴流解析の結果を示 す. 第 13 図 - (a) は気液界面に液体中の各液体の体積分 率 β を描画させた図で, - (b) は噴流中心断面の密度分 布図である. さらに, 冒頭で説明したとおり, 微粒化現 象などを数値解析的に模擬するためには, 界面の複雑な 変化を追跡する必要があるが, 液滴まで微粒化した後の 液滴の追跡は, 衝突噴流微粒化では二次微粒化(液滴の 分裂, 衝突)が起きにくいため不要である. よって, 液 滴形成後は固定格子をもたない, Lagrangian による追跡 方法で十分とし, Eulerian から Lagrangian への変換を行 えるようなソルバ改修が進んでいる. 第 14 図に液滴の Lagrangian 変換解析例を示す.

第14図 液滴の Lagrangian 変換解析例⁽¹²⁾ Fig. 14 Numerical simulation of conversion from Eulerian to Lagrangian representation for liquid droplets⁽¹²⁾

5. 結 言

本稿では、高精度液体微粒化シミュレーションの数値 解析方法として CIP-LSM を用い、その手法を説明し、衝 突噴流微粒化の解析を実施して試験結果と比較検証した. CIP-LSM は、気液界面を高精度に追跡し、複雑な自由界 面をもつ流れに対して有効に働くと考えられる。解析の結 果、同等の解析をした VOF 法の結果と比較して微粒化の 再現性が高く、試験と比較してもファンの傾きや広がりな どをほぼ再現できていることが分かった。また、格子密度 を現実的な範囲で上げることで実現象の再現性は高まる. 現在,対象の現象に適用できるよう,あるいはほかの対象 に対しても適用できるよう開発を進めている.

— 謝 辞 —

本研究は、東京大学大学院工学系研究科航空宇宙工学専 攻渡辺・姫野研究室との共同研究によって実施されてい る.渡辺紀徳教授、姫野武洋准教授そして、独立行政法人 宇宙航空研究開発機構東大社会連携講座の井上智博特任准 教授から多大なるご指導、ご協力をいただいていること、 ここに記し、深く謝意を表します.

参考文献

- (1) 高田尚樹,広川景俊,林 公祐,冨山明男: フェーズフィールド界面追跡法による二相流数値シ ミュレーション 第 20 回数値流体力学シンポジウ ム 2006 年 12 月
- (2) J. J. Monaghan : An Introduction to SPH Computer Physics Communications Vol. 48 (1988) pp. 89 - 96
- (3) 越塚誠一:粒子法による流れの数値解析 ながれ 第21巻 2002年6月 pp.230 239
- (4) D. J. Benson : Computational Methods in Lagrangian and Eulerian Hydrocodes Computer Methods in Applied Mechanics and Engineering

Vol. 99 (1992. 9) pp. 235 - 394

- (5) M. Sussman, P. Smereka and S. Osher : A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow Journal of Computational Physics Vol. 114 (1994.9) pp. 146 - 159
- (6) 姫野武洋,根岸秀世,野中 聡,井上智博,渡辺 紀徳,鵜沢聖治:様々な加速度環境における自由表 面流の数値解析(CIP法, MARS法, Level Set 法 を協調した解法の改良) 日本機械学会論文集 B 編 第 76 巻 765 号 2010 年 5 月 pp. 778 -788
- (7) T. Yabe and P. Wang : Unified numerical procedure for compressible and incompressible fluid Journal of the Physical Society of Japan Vol. 60 (1991. 7) pp. 2 105 - 2 108
- (8) 功刀資彰:自由界面を含む多相流の直接数値解析法 日本機械学会論文集 B 編 第 63 巻 609 号

1997年5月 pp.1576-1584

- (9) J. U. Brackbill, D. B. Kothe and C. Zemach : A Continuum Method for Modeling Surface Tension Journal of Computational Physics Vol. 100 (1992.6) pp. 335 - 354
- (10) 姫野武洋,野中 聡,青木広太郎,渡辺紀徳:
 CIP-LSM による複雑形状を有する容器内自由表面流の数値解析 日本機械学会第22回計算力学講演会2009年10月
- (11) J. Kouwa, S. Matsuno, C. Inoue, T. Himeno and T. Watanabe : Free-surface Flow Simulation of Impinging Jet Nozzles for Liquid-propellant Thrusters 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2013.6)
- (12)井上智博,渡辺紀徳,姫野武洋:液膜微粒化のマルチスケール数値解析
 第 27 回数値流体力学シンポジウム 2013 年 12 月