シンプル・高性能化技術(タービン)

Development of Simple and High-Performance Technology for Turbine

谷	光	玄	行	航空宇宙事業本部技術開発センター要素技術部	
仲	俣	千由	紀	航空宇宙事業本部技術開発センター要素技術部	博士 (工学)
藤	本		秀	航空宇宙事業本部技術開発センターエンジン技術	
青	木	祥	宏	航空宇宙事業本部技術開発センター材料技術部	博士 (工学)
石	崎	雅	人	技術開発本部生産技術センター生産技術開発部	主査

環境適応型小型航空機用エンジンにおける直接運航費用を低減するため,性能を維持して高負荷化を図るための 衝撃波制御やカウンタローテーション化の研究を行いリグ試験で空力性能を実証した.マルチスロット多層冷却構 造および高効率フィルム冷却孔の独自冷却方式を考案し翼列試験で性能を実証した.先進単結晶材翼製造プロセス における低コスト化技術の適用を明らかにし国産単結晶合金実用化の見通しを得た.レーザ CVD による熱遮断コー ティング形成技術の研究を行い,実用化に向けた技術課題を明らかにした.

To reduce direct operating costs of environmentally compatible engine for small aircraft, higher loading turbine without performance decrement was studied. The study was carried out for shock wave control and feasibility of counter-rotation turbine system. The aerodynamic performance was verified by the rig tests. Another outstanding advancement was novel cooling technologies. There were two key technical features: multi-slot internal cooling system and newly-developed film cooling hole to improve film effectiveness. These new cooling systems were validated in the cascade rig tests. To evaluate the applicability of Japanese single crystal superalloys to low cost HPT blades, studies of ingot, casting and heat treatment processes of the superalloys were conducted for the HPT blades. The laser-CVD process was studied as the coating method of the top layer of TBC. Trial coating on turbine blades was carried out, and the technical problems of the method for application was explained.

1. 緒 言

環境適応型小型航空機用エンジン(小型エコエンジ ン)では、取得費用、整備費用、燃料費用からなる直接 運航費用の大幅な低減を目指している. 比重が大きく高価 なニッケル系材料を多用した多段の動・静翼列部品など から構成されるタービンでは、高効率を維持しつつ、段 数を削減して大幅な重量削減と低コスト化を実現するシ ンプル・高性能設計技術が求められる.空力では、単段 の高負荷高圧タービンを実現するために、衝撃波制御技 術, 高圧タービン・低圧タービン間のインタラクション低 減に有効なカウンタローテーション化技術を開発した.冷 却では、シンプル高効率を実現する翼冷却の手段として、 マルチスロット状の多層冷却構造(1)や高効率フィルム 孔の適用⁽²⁾を検討した.実施に当たっては、伝熱 CFD (Computational Fluid Dynamics) などの解析技術を活用 した形態最適化を実施し、また冷却性能試験によって設 計手法の評価・検証を行った. 解析および試験の一部は,

JAXA (独立行政法人宇宙航空研究開発機構) および東 京農工大学との共同研究で実施した.材料では,従来の タービン翼用単結晶合金に比べ優れた高温強度特性をも つ次世代単結晶合金として,NIMS (独立行政法人物質・ 材料研究機構)と当社が共同で開発した先進単結晶合金 である TMS-138 を供試材料とし,これまで得られている 材料特性を確保しつつ低コスト化,製造性向上のための研 究開発を実施した.製造では,レーザ CVD (化学気相蒸 着)法を用いて,YSZ (イットリア安定化ジルコニア) のコーティング形成技術の開発を行い,タービン翼部材へ のTBC (熱遮へいコーティング)形成に向けた技術的課 題を明らかにした.

本稿では,エコエンジンプロジェクトで行った空力・冷 却・材料・製造の先進技術開発の成果について報告する.

2. タービン空力設計技術

2.1 高圧タービン動翼の衝撃波制御技術 高負荷高圧タービンでは、タービン翼列内のマッハ数が 高くなるため衝撃波が発生し空力性能を落とすとともに, 低圧タービンと干渉してインタラクションロスを増加させ るため,衝撃波制御が課題となる.

タービン動翼の衝撃波損失低減を実現する翼形状を得る ために, 翼間で発生する衝撃波の強さを変えた4種類の 翼形状を CFD 解析で試設計した. 第1図に各翼形状の 翼面マッハ数分布を示す. 翼形状により翼面背側のピーク マッハ数以降の減速が異なっているのが分かる. この四つ の翼形状について5タイプの翼を設計・製作した. すべて の翼は実機を考慮して翼面上に冷却引を設けてある. 翼形 状としてはタイプIとIIがベースライン翼であり,タイプ II, IVがそれぞれ衝撃波制御翼 A, 衝撃波制御翼 B,タイ プVが後縁厚み大翼である. 第1表に各タイプの概要を 示す.

第2図は試験に供試した翼の外観を示す.高マッハ数 域での計測が可能な高速二次元翼列風洞試験で各タイプの

第1表 5タイプの翼 Table 1 Five airfoil types

	翼形状	冷却孔位置
タイプI	ベースライン翼	背側吹出部は前縁寄り 後縁吹出は翼後縁腹側面
タイプⅡ	ベースライン翼	背側吹出最後列がタイプIより後 後縁吹出はタイプIと同じ
タイプⅢ	衝撃波制御翼 A	タイプIと同じ
タイプⅣ	衝撃波制御翼 B	タイプIと同じ
タイプV	後縁厚み大翼	背側吹出部はタイプIと同じ 後縁吹出は翼後真ん中

性能を計測した. 翼列出口ミッドスパン位置での全圧トラ バース計測結果を出口マッハ数に対する無次元化ロス係数 で整理したものを第3図に,衝撃波強さで整理したもの を第4図に示す.また,第5図はベースライン翼形状に ついて翼背側面上の冷却凡位置を変えた場合の出口マッハ 数に対するロス係数分布を示す.

第3図および第4図より、タイプIは亜音速ならびに

第1図 翼面マッハ数分布 Fig.1 Mach number distribution on airfoil surface

第2図 供試翼 Fig. 2 Tested airfoil

第4図 翼タイプの違いによる衝撃波強さの変化 Fig. 4 Shock strength by airfoil types

第5図 翼背側面上の冷却孔位置の違いによるロス係数の変化 (ベースライン翼)

Fig. 5 Changes in loss coefficient by different cooling hole position on airfoil suction side

遷音速域においては安定した翼素性能を示すものの,高 マッハ数域ではロス,衝撃波強さともに大きくなっている のが分かる.また、タイプⅢは高マッハ数域ではロスが 小さくなっているものの亜音速ならびに遷音速域で急増し ており、衝撃波強さも1.3以上の高マッハ数域においてタ イプⅣより大きくなっている.タイプⅣは想定されるエン ジン作動域である出口マッハ数 1.0 ~ 1.4 の範囲において 大きなロスを発生することなく最も安定した性能をもって おり、衝撃波強さも急激に大きくならないことが分かる. タイプⅤは翼後縁中央からの冷却空気吹き出しによって ウェークを弱める効果が期待されたが、高マッハ数域にお いては他のタイプに比べて後縁厚みが大きいためにロス、 衝撃波強さともに大きくなっている.第5図からは、出 ロマッハ数 1.2 以上では背側冷却吼位置が前縁側にあるタ イプIの方がロスが小さくなっているのが分かる.

以上から,タイプIVはほかの翼形状に比べてエンジン作 動全域において衝撃波強さを抑え安定した翼素性能をもっ ており,高負荷高圧タービン動翼形状として最適であるこ とが分かった.また,高負荷高圧タービン翼では翼背側の 冷却空気吹出し位置がロスに影響を与え,高マッハ域にお いては後流側のマッハ数の高い箇所から冷却空気を吹き出 すと翼素性能に悪影響を与える度合いが大きくなることが 分かった.

2.2 カウンタローテーション技術

高負荷高圧タービンでは、従来2段で達成していた膨 張比を単段で実現するためにはタービン出口でスワール (旋回成分)が残る.低圧タービンを高圧タービンと逆 方向に回転させるカウンタローテーション化は、高圧ター ビン出口スワールを有効活用しながら高圧タービン・低圧 タービンのインタラクションロス低減に有効であるため高 効率化に有望な技術である.

この技術を獲得するために,まず,高圧タービン静翼お よび動翼さらに低圧タービン初段静翼までの翼の試設計を 行い,1.5 段非定常 CFD 解析にてカウンタローテーショ ンによるインタラクション低減効果を確認した⁽³⁾.

次に,高圧タービンおよび低圧タービン初段静翼の設計・ 製作を行い、1.5 段タービン回転試験で性能を評価した. 低圧タービン初段静翼についてはカウンタローテーション 効果を計測するためにカウンタローテーション形態と従 来回転であるコローテーション形態の2形態を供試した. ミッドスパンでの翼断面形状を第6図に示す.カウンタ ローテーション形態の低圧タービン初段静翼はコローテー ション形態の静翼に比べ転向角が小さいことが分かる.第 7図に 1.5 段タービン回転試験機断面を,**第8**図に供試体 の試験設備搭載状態を示す.本試験では実機での高圧ター ビン性能を評価するために高圧タービンに必要な冷却空 気の吹き出しを模擬している. 1.5 段回転試験では、高圧 タービン単体性能マッピング取得とインタラクション評価 のために高圧タービン出口および低圧タービン初段静翼 出口で空力計測を行っている.第9図に高圧タービン単 体性能マップを示す. 取得した効率は設計目標に対して約 0.8 ポイント高くなっており、高性能な高負荷単段タービ ン設計技術が得られた.

第10図はカウンタローテーション形態とコローテー ション形態の低圧タービン初段静翼のロス係数分布の比較

高圧タービン動翼

第8図 供試体搭載状態 Fig. 8 Installed HPT Modules

第9図 高圧タービン性能マップ **Fig. 9** HPT Performance test results

を示す.カウンタローテーション形態の静翼はコローテー ション形態に比べチップ付近を除いて大幅にロスが低減さ れている.**第11図**には,低圧タービン静翼出口位置での

第10図 低圧タービン静翼ロス係数 Fig. 10 Loss Coefficient of LPT nozzle

計測と 1.5 段非定常 CFD 解析結果との比較を示す. CFD 解析は試験と良好に一致しており、本研究で用いている CFD 解析の妥当性が確認できた. 第12 図は低圧タービン静翼でのロスを非定常 CFD 解析と定常 CFD 解析とで

第 12 図 低圧タービン静翼でのインタラクションロス
Fig. 12 Interaction loss at LPT nozzle

比較している.非定常 CFD と定常 CFD によるロスの差 は翼列干渉で発生するロスと考えられるため,この図か ら,カウンタローテーションによって高圧タービン流れと 低圧タービン初段静翼とのインタラクションロスが低減さ れていることが分かる⁽⁴⁾.

以上の結果から, 1.5 段回転試験によって高負荷単段高 圧タービン部の性能を実証した. 試験データで検証された CFD 解析によってカウンタローテーション化によるイン タラクション低減効果を確認でき,単段高負荷高圧タービ ン実現に必要なカウンタローテーション技術を取得した.

3. タービン冷却設計技術

3.1 マルチスロット冷却構造

小型エンジンのタービン翼では、複雑な冷却方式を避け て、なるべくシンプルな内部構造とすることが望ましい. たとえば、従来のタービン静翼でよく見られるようにイン サートを翼内部にはめ込んで2重構造とすることなどは、 翼のサイズが小さい場合には著しく製造を困難にする.そ こで、本研究の一環として小型エンジンのタービン静翼の 冷却に適した「マルチスロット冷却構造」を新たに開発 した. 第13図に示すように、本構造では翼内部に互い違 いに設置されたリブによって、複数のスロットが形成され ている.始めに導入口から翼内部に流入した冷却空気は、 各スロットを通過しながら、特に流れの転向部位で高い 熱伝達率を実現して効率的に翼内面を冷却することができ る.また、この構造はインサートのように別部品を組付け る必要がないため、図に示すように翼をスパン方向に湾曲 させて積層させるなどの三次元翼型設計に対応することも

可能である.

まず開発の初期段階で実施した基礎的な冷却性能試 験で、マルチスロット冷却構造の成立性にめどが得ら れた⁽¹⁾. そこで最終的には**第 14 図**に示すような実環境 を模擬したセクタ翼列試験装置を用い、実エンジンと同じ スケールの冷却翼を供試して冷却性能の実証を行った. 図 中、翼列中央部に配置されているのが、マルチスロット冷 却構造をもつ静翼である. **第 15 図**に供試翼単体の外観を 示す.本研究では、当該構造の冷却性能実証とともに、既 存の精密鋳造技術、加工技術による製造性実証も大きな目 標の一つであった. 翼列試験に供試する鋳造翼の試作を通 じ、図に示すような三次元的な翼型に対応したマルチス ロット冷却構造が、現有の製造技術によって、従来の冷却 構造と同等のコストで製造できることが確認された.

第16図に翼列試験で取得した翼面温度の分布および翼 平均径断面での冷却効率を示す. 翼面温度は,まず図のよ

第14図 セクタ翼列試験装置 Fig. 14 Annular sector cascade rig

第15図 供試翼の外観 Fig. 15 Photograph of multi-slot cooled vane

うな全体分布を赤外線放射画像装置で計測し、その各絶対 値を翼面に設置した熱電対によって補正している. 分布か ら分かるように翼面はおおむね一様な温度となっており局 所的な温度過昇(ホットスポット)の存在は見られない が、翼の後縁部については流路壁付近の温度がやや高いこ とが確認される.またこの傾向は腹側よりも背側で顕著で ある. 原因として疑われるのは、翼間で発生した2次流 れの影響である.2次流れ理論によれば、2次流れによる 渦は翼間の流路壁近傍で序々に発達し、後縁の翼面背側付 近で最も発達する. この渦の影響により背側後縁部の主流 熱伝達率が増加し、温度が上昇したと考えられる. 冷却設 計段階では主流の 2 次流れの影響を十分に考慮していな かったため、当該部の冷却が十分でなかった疑いがある. 一方, 平均径断面での冷却効率を設計と計測値とで比較し たグラフを見ると、おおむね設計通りの冷却性能が試験で も得られていることが分かる。

以上の結果から,エコエンジンプロジェクトの一環とし て開発したマルチスロット構造は,複雑な冷却方式を適用 しにくい小型のタービン翼に対しても,従来同等の製造コ ストで三次元翼型にも対応できる非常に優れた冷却構造で あることが実証された.

3.2 高効率フィルム孔

エコエンジンプロジェクトの中で行ったもう一つの冷却 技術開発は,高いフィルム効率の得られる新しいフィルム 冷却に関するものである.その狙いは,フィルム効率を高

Fig. 16 Measured surface temperatures on vane surfaces

めることで、必要冷却空気量を減らし、それによってエン ジンの燃料消費率を低減させる点にある. 開発に当たって は、まず CFD 解析を活用し、フィルム孔形状をどのよう に改良すれば、フィルム効率を向上できるかを検討し、最 適な孔形状の探索を行った.その際,留意した点としては, 主流熱伝達率の増加や主流との混合による損失さらには形 状の複雑化による製造コストアップなどのデメリットを負 わずに(あるいは最小限度にとどめつつ)フィルム効率 の向上を達成させる事が挙げられる. 最適化の結果得られ た新しいフィルム孔形状を、従来形状と比較して第17図 に示す.新しい孔形状の特徴は、フィルム冷却流の側方 への拡散を促進するため(実効の面積拡大比が従来孔同 等となるように保ちつつ), 側方への孔の拡がりを増すよ うに工夫した結果,開口部が鏃状になっている点にある. フィルム流が、狙い通り側方へ良好に拡散すれば、より均 ーなフィルム層を主流表面上に実現できるため,結果とし て平均フィルム効率が向上することが期待できる. この形 状は,特殊な加工技術を用いなくとも,従来よりシェイプ

(b) 本研究で開発した孔 (断面図)

第17図 フィルム冷却孔形状の比較 Fig. 17 Comparison of film cooling hole geometries

ドフィルム孔の加工に用いてきた放電加工によって製造可 能である.

次に,最適設計した新型の高効率フィルム孔について, この孔形状を適用した翼型による冷却性能試験を実施し た. 第18 図に試験装置および試験に供試したフィルム冷 却翼を示す. 図に示すように, 翼の背腹面のフィルム孔下 流には,感圧塗料を塗布しているが,これはフィルム効率 を計測するためである. 試験では、装置の外から窓を介し て翼の塗料塗布部に光を当てる. 感圧塗料には, 雰囲気の

(a) 試験装置

偏向板

酸素分圧に応じた強度で発光する特性があるため、翼面の 酸素濃度に応じた発光画像をカメラで撮影することができ る.フィルム孔から噴出させる冷却側作動流体として空気 以外の気体(本実験では窒素ガス)を用いると、画像で 得られた発光強度からフィルム効率データを高精度に取得 することができる.第19図に翼背側および腹側のフィル ム効率を従来のシェイプド孔と比較して示す. 図から明ら かなように背腹両面で,新型フィルム孔の方が高いフィル ム効率を実現できている.特に背側における効率向上が顕

(b) 供試翼

第18図 試験装置および供試したフィルム冷却翼 Fig. 18 Experimental apparatus and tested film-cooled vane

第 19 図 フィルム効率計測結果の比較 Fig. 19 Comparison of measured film effectiveness

著である.

こうしたフィルム効率向上のメカニズムは流体解析結果 から明らかにされている. 第20図に示すように,従来の フィルム孔の場合,主流とフィルム空気流が干渉する部分 で,一対の互いに反転する縦渦が形成される.この渦の影 響で,フィルム流は壁面から引きはがされ,また同時に側 方からは主流の高温ガスが壁面付近へ引き込まれているこ とが分かる.新型フィルムの場合も同様の縦渦が形成され ているが,特筆すべきは渦の向きが従来孔とは逆になって いる点である.この渦の逆転によって,フィルム流は壁面 へ押し付けられ,そのまま壁面に沿って側方へ引き伸ばさ れていることが分かる.こうした渦の逆転効果によって, 新型フィルム孔ではフィルム効率が向上していると考えら れる.

以上の結果から,エコエンジンプロジェクトの一環とし て開発した高効率フィルム孔は,既存の加工技術の範囲内 で対応可能な孔形状の改良によって,翼面での渦構造が変 化して主流との混合が抑制され,その結果として大幅に冷 却性能を高めることができることが実証された.

4. タービン材料技術

4.1 先進単結晶材翼製造技術

翼素材製造プロセスは、鋳塊(インゴット)製造、単 結晶鋳造、熱処理、検査などで構成される.供試材料 である単結晶合金 TMS-138 の合金成分を既存合金の CMSX-4 と比較して第2表に示す.本合金は白金族の Re を CMSX-4 に比べ多量に含有することに加え、同じく白 金族の Ru が含まれているため、材料コストが上昇する. そこで、翼素材のコスト低減のため、以下の低コスト素材 製造プロセス技術の適用を検討した.

第2表 CMSX-4とTMS-138の化学組成(wt%) Table 2 Chemical compositions of CMSX-4 and TMS-138(wt%)

供当社科	化学組成										
供訊材件	Co	Cr	Мо	W	Al	Ti	Та	Hf	Re	Ru	Ni
CMSX-4	9.6	6.4	0.6	6.4	5.6	1.0	6.5	0.1	3.0	-	60.8
TMS-138	5.9	2.9	2.9	5.9	5.9	-	5.9	0.1	4.9	2.0	63.6

① スクラップ材の再利用技術 (鋳塊製造)

② 多数取り鋳造技術 (鋳造)

③時効熱処理簡略化技術(熱処理)

4.1.1 スクラップ材の再利用技術

原材料コストの低減に大きく寄与するスクラップ材の再 利用可否を確認するために,スクラップ材成分の定量分析 を実施した.スクラップに混入する微量不純物元素の量か ら,再利用するスクラップ材の選別と配合比を決め,スク ラップと溶解材料との混合した鋳塊および単結晶素材を製 造した.定量分析によって合金成分を確認した結果,成分 の偏析は見られず,また高温特性への影響も認められない ことから,スクラップを再利用して素材費をコストダウン することが可能であることを確認した.

4.1.2 多数取り鋳造技術

鋳造工程では,鋳型当たりの翼の製造枚数が多ければ, 一枚当たりの鋳造コストを低くすることができる.一般的 な単結晶合金翼鋳造方案⁽⁵⁾に対して,**第21図**に示すよ うに2段に翼を取り付け,多数取りできる鋳造方案を提 案した.鋳造に先立ち,鋳造シミュレーションを用いて条 件の最適化を図っている.鋳造試験をした結果,この低コ スト鋳造方案が試作レベルではあるが採用できることを確

第20図 孔出口近傍の2次速度成分とフィルム効率の数値解析 結果

Fig. 20 Calculated secondary velocity vectors and film effectiveness near the hole exit

第 21 図 低コスト鋳造方案 Fig. 21 Model of low cost casting process using casting simulation

認した.

4.1.3 時効熱処理簡略化技術

既存の単結晶合金(CMSX-4 など)などは,強度特性 を引き出すために,溶体化と一次および二次時効熱処理が 必要とされる.低コスト化のために,これらの熱処理プロ セスを簡略化することを目的として,二次時効熱処理の時 間を変化させた試験片を作成し,組織評価,強度評価を実 施した.

第22図に、二次時効熱処理0時間(つまり、二次時 効熱処理なし), 5, 10, 20時間の電子顕微鏡組織像を 示す. すべての時間に対して, γ'相は非常に良い整合 性(cuboidal 状組織が整列している)をもち、さらに γ 相の寸法も違いは見られなかった.これらの結果から、ど の熱処理時間であっても γ'相は非常に整合性が良く、ま た γ '相の間に析出する Cooling γ '相が存在することから, 組織的には二次時効熱処理は必要ないと考えられる. 第 23 図に二次時効熱処理なし試験片を用い、応力 - ラーソ ン・ミラーパラメータ関数で整理したクリープラプチャー 特性を示す.比較として、従来合金である CMSX-4 およ び 20 時間の時効熱処理を施した TMS-138 の結果も図に 示す(6). 二次時効熱処理なしの値は、二次時効熱処理を 実施した値と比較し、大きな違いは見られなかった. また CMSX-4 と比較して、すべての測定した応力範囲で優れ た高温特性があることが分かる.以上のことから、従来の 合金では必要とされる二次時効熱処理をなくして、プロセ スを簡略化できる見通しを得た.

以上の結果から, 鋳塊製造, 鋳造, 熱処理プロセスの 低コスト化技術を次世代の単結晶合金に適用できる見通

6 µm

第22図 二次時効熱処理時間を変化させた試験片の断面 SEM 像 Fig. 22 SEM Images of secondary age heat treatments

しを得た.これらの技術を適用すれば,既存の単結晶合金(CMSX-4など)と比べて大幅なコスト上昇をすることなく,優れた特性をもつ単結晶タービン翼を製造できることが期待できる.

タービン製造技術 (CVD 適用による TBC 形成技術)

溶射に代わる TBC トップコートの形成技術として, TBC に適した微構造の付与が可能である EB-PVD (Electron Beam-Physical Vapor Deposition)が広く適用されている が, 微細組織が制御可能でより安価なプロセスとなる可能 性のある代替技術として CVD が有望である. CVD 法によ るコーティング層の組織制御を行うためには,結晶成長に 必要なエネルギーの供給が必要である. 耐熱性に限界のあ る金属材料上にセラミックコーティングの結晶成長を可能 とするために,本研究では,部材の限られた部分に大きい エネルギーの供給が可能なレーザ加熱を適用し,TBC トッ プコート材料であるイットリア安定化ジルコニアのレーザ CVD によるコーティング形成技術の開発を行った.

原料として用いた材料は、ジルコニウムおよびイットリ ウムのジピバロイルメタナト (dipivaloylmethanate:以 下,DPM と呼ぶ) 錯体(昭和電工株式会社製) である. DPM 錯体は CVD における金属元素の供給ガスとして有 用であるが、300℃付近の低温から熱分解を生じるため、 原料の温度管理に十分な注意を払う必要がある.CVD の 原料ガスの供給は、2 種類の DPM 原料をアルゴンでキャ リーして混合したガスと酸素とを、同軸の2 重円筒ノズ ルで反応容器内に導入した.

基材としてアルミナイズ層を形成したニッケル基合金 のボタン型試験片を用いて、YSZ コーティング形成試験 を行い、柱状晶のコーティング形成条件の検討を行った. ニッケル基合金のアルミナイズ表面上に形成した TBC 層 のはく離を防止するために、基材は大気中で予備酸化処理 を行った.コーティング形成パラメータとして、レーザ出 力、原料ガス流量、反応圧力、原料ガスノズルと基材との 距離について検討を行い、コーティング表面に TBC コー ティングとして望ましい柱状晶の成長を示すファセットを 形成する条件を見いだした(**第24 図**).

ボタン型試験片へのコーティング試験で得られたコー ティング形成条件によって、タービン動翼部材への TBC 形成試験を行い、複雑な三次元曲面形状のタービン部材 全面へコーティングの形成が可能であることを確認した. コーティング形成は、原料ガスノズルに対して部材を移動 させて逐次反応を行い、翼全面への形成を行った(**第25** 図). 翼面上に形成されたコーティングの組織には、ファ セットがはっきり確認できる部分と、アモルファス状の コーティングとなっている部分が見られた.アモルファス 状の組織が見られる部分は、レーザ照射の中心から離れた 部位で、エネルギー供給が結晶成長を生じるのに不十分で あったためと考えられる. 翼の全面にわたって望ましい組 織のコーティングを形成するためには、原料ガスの供給と あわせて必要かつ十分な面積に十分なエネルギーを供給す る技術の確立が必要である.

第 24 図 レーザ CVD で得られた YSZ コーティングの表面 Fig. 24 Surface structure of YSZ coating obtained by laser-CVD

 第 25 図 レーザ CVD で翼面に YSZ コーティングを形成した タービン動翼
Fig. 25 A turbine blade with YSZ coating by laser-CVD

6. 結 言

本稿では,エコエンジンプロジェクトで開発してきた タービンのシンプル・高性能化技術を概説した.

空力では、高負荷タービン動翼の衝撃波を制御する翼設 計の基礎データを取得した.また、回転試験で高負荷高圧 タービンの性能を実証し、試験および CFD 解析でカウン タローテーション効果を確認し、カウンタローテーション 技術を適用した単段高負荷高圧タービンの実現の見通しを 得た.

冷却では、マルチスロット冷却構造は、複雑な冷却方式 を適用しにくい小型のタービン翼に対しても、従来同等の 製造コストで三次元翼型にも対応できる非常に優れた冷却 構造であることが実証された. 高効率フィルム孔は、既存 の加工技術の範囲内で対応可能な孔形状の改良によって、 翼面での渦構造が変化して主流との混合が抑制され、その 結果として大幅に冷却性能を高めることができることが実 証された.

材料では、鋳塊製造、鋳造、熱処理プロセスの低コ スト化技術を次世代の単結晶合金に適用できる見通し を得た.これらの技術を適用すれば、既存の単結晶合 金(CMSX-4など)と比べて大幅なコスト上昇をするこ となく、優れた特性がある単結晶タービン翼を製造できる ことが期待できる.

製造では, EB-PVD を代替し得る TBC トップコート形 成技術としてレーザ CVD の開発を行い, タービン動翼へ のコーティング試験によって, 三次元曲面がある複雑形状 部材にコーティングを形成することが可能であることを示 した. また,大型部材に TBC として成立し得る均質なコー ティングを形成するための課題を明らかにした.

— 謝 辞 —

本研究は,経済産業省の民間航空機基盤技術プログラム による「環境適応型小型航空機用エンジン研究開発」の 一環として,独立行政法人新エネルギー・産業技術総合 開発機構(NEDO)から助成を受けて実施しているもので ある.本研究の実施に当たり,ご指導とご協力をいただい たNEDO,独立行政法人宇宙航空研究開発機構(JAXA), 独立行政法人物質・材料研究機構(NIMS),東京農工大 学の関係各位のご厚誼に対し,深く感謝の意を表します.

参考文献

(1) 藤本ほか:小型エコエンジン開発に向けたタービン先進冷却技術の研究 第47回航空原動機・宇宙

推進講演会 2007 年

- (2) Y. Okita and M. Nishiura : Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry Journal of Turbomachinery Vol.129 No.2 (2005) pp. 331-339
- (3) M. Hamabe, R. Yamawaki, H. Hamazaki and H. Tanimitsu : Numerical Investigation of the Effects of a Counter-Rotating LP Turbine on an Interaction between a HP and the LP TurbineACGT Paper ACGT2005-070
- (4) H. Tanimitsu, H. Hamazaki, K. Mitsuhashi and N. Asaumi : Performance Improvement of HP and LP Turbine in ECO Engine ISABE-2007-1220 (2007)
- (5) Roger C. Reed : The SUPERALLOYS Fundamentals and Applications CAMBRIDGE UNIVERSITY PRESS pp. 124-125
- (6) Y. Aoki, M. Arai, K. Chikugo, Y. Koizumi and H. Harada : Mechanical Properties and Castability of a 4th Generation Ni-base Single Crystal Superalloy TMS-138 IGTC2003 Tokyo TS-118 (2003)