ラジアルタービン可変ノズルの翼端すき間がタービン性能へ 及ぼす影響

Effect of Clearance Flow of Variable Area Nozzles on Radial Turbine Performance

玉 木 秀 明 技術開発本部総合開発センター回転流体機械開発部 部長 博士(工学) 技術士(機械部門)
 海 野 大 技術開発本部総合開発センター回転流体機械開発部 主査

VGS タービンのノズル翼端すき間が,タービンの性能(効率)へ及ぼす影響について調べた.対象としたベーン 開度は,最小および最大開度である.各開度において,(1)ノズルベーン翼端すき間と翼端すき間を通過する漏れ 流量の関係(2)翼端すき間とノズルベーンの圧力損失係数の関係を調べ,最小開度における翼端すき間がタービン 性能へ及ぼす影響が無視できないことを明らかにした.さらに,最小開度および最大開度において,ノズル翼端す き間がタービン性能へ及ぼす影響を CFD を用いて明らかにした.

The effect of the vane tip clearance of variable nozzles on turbine performance was estimated, and a strong effect on the turbine efficiency was confirmed at the smallest opening. The flow fields in the impeller downstream of the nozzle vane at the smallest opening and the largest opening, with and without the nozzle clearance, were investigated with CFD. The setting angle of the nozzle vane without the clearance was adjusted to match the operating points of the turbine with the nozzle clearance. The larger relative flow angle at the impeller inlet with the nozzle clearance than that without nozzle clearance deteriorated the turbine efficiency.

1. 緒 言

ディーゼルエンジンは過給機を装着することで,高圧縮 比化によるエンジンの高出力化と熱効率(燃費)の向上, 高出力化によるエンジンの小型化と車両重量低減による燃 費の向上,高空燃比化による黒煙の抑制と燃焼ガスの低温 化による NO_x の抑制が可能となる.過給機は出力と燃費 を向上させると同時に排ガス対策を兼ねる重要な技術であ る.近年,エンジン回転数の変化に応じて,タービンノズ ルベーンの取付角を変化させることができ,エンジン作動 点に対して圧縮機の過給圧を最適に制御できる可変ノズル 機構(VGS)を備えた過給機の装着率が急増している.

これらの VGS を備えたラジアルタービン (VGS ター ビン)を設計するためには、その流れ場と性能の関係を 理解する必要がある.筆者らは、既報⁽¹⁾において、ノ ズル単体試験装置を用いて、ノズルの最小および最大開 度(ノズルベーンの取付角が最大および最小、以下、角 度はすべて半径方向から計測)の状態で、ノズルが可動 であるために存在する翼端すき間を通過する翼端漏れ流れ が、ノズル出口(タービンインペラ入口)流れ場へ及ぼ す影響について調べた⁽¹⁾.その結果、以下のことが明ら かとなった.

(1) ノズル開度小の場合

ノズルベーン下流の流れ場は, 翼端漏れ流れの影響 を強く受け, 壁近傍には, 漏れ渦に起因する低エネル ギ域が発生する. 主流の流れはノズルベーンで周方向 に曲げられ旋回速度の大きい流れ場となる. 流れ場に は, この旋回による遠心力と釣り合うように, ノズル 外周から内周に向け圧力勾配が生じる. 一方,境界層 内の旋回速度は主流に比べ小さいため, 主流の圧力勾 配に対抗できる遠心力を発生することができない. こ のため,境界層内の流れは半径方向に曲げられ,壁近 傍では,流れ角が小さくなり半径方向速度が増加する. この結果,壁近傍を通過する流量が増加し, 主流を通 過する流量が減少する. 翼端すき間がある場合, すき 間を通過する流れはノズルベーンの拘束を受けないた め,壁面近傍の流れ角はさらに小さくなり, 半径方向 の速度成分が大きくなる.

(2) ノズル開度大の場合

ノズルベーン下流の流れ場は、ノズル後流に起因す る低エネルギ域が存在する流れ場となり、翼端漏れ流 れの影響は小さい.

本稿では、ノズルベーンから流出した流れが、VGS ター ビンの性能(効率)へ及ぼす影響について調べた.対象 としたベーン開度は、既報と同様に最小および最大開度で ある.さらに、実際の VGS タービンに対してノズル翼端す き間がタービン性能へ及ぼす影響を CFD (Computational Fluid Dynamics)を用いて明らかにした.

2. ノズル翼端漏れ流れと、ノズル性能の関係

この章で議論するノズル形状は、既報で考察したノズル と同一である. 第1図にノズル形状,第1表に代表寸法 を示す.表中のノズル後縁はインペラ入口半径で無次元化 している.また、スロート幅は開度大を1.0とした場合の 相対値である.ここでは、CFDの結果を基にノズル性能 を評価する.計算領域入口における流れ角、全圧、全温お よび出口における静圧を一定に保ち、すき間をパラメータ に解析を行った.第2表に計算条件を示す.翼端すき間*c* は、ハブ、シュラウド側にそれぞれすき間が0.5*c* あるこ とを意味する.第2図に翼端すき間*c*とノズルベーン高さ *b*2の比(*c/b*2)と、翼端すき間を通過する漏れ流量*Wc*と全 流量*W*の比(パーセント表示)を示す.ここでは、ノズ ルベーンの中心線を横切る流量が漏れ流量であると仮定し

第1図 供試ノズル形状 Fig.1 Tested nozzles

第1表 ノズル寸法 Table 1 Nozzle main dimensions

項目	入 口 角 度 (度)	出 角 度 (度)	ノズル 翼高さ (mm)	ノズル翼端 すき間 (mm)	スロート幅 (一)	ノズル 後縁 (一)	翼枚数 (一)
問座小	72.0	85.0	12.75	0.75	0.277	1 221	
用皮小	72.0	85.0	13.50	0.00	0.277	1.231	11
關産十	51.0	65.0	12.75	0.75	1.00	1.025	11
刑 戊人	51.0	05.0	13.50	0.00	1.00	1.055	

		第 2 Table 2	2表計算 Boundar	草条件 y condition		
	項目	入口全温 (K)	入口全圧 (KPa)	出口全圧 (KPa)	流入角 (度)	
	開度小	403.15	270	100	66.9	
	開度大	403.15	250	100	66.9	
W_c/W (%)	$ \begin{array}{c} 40 \\ 35 \\ - \\ 30 \\ - \\ 25 \\ - \\ 20 \\ - \\ 15 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	-O-:開 :開	度小 度大 0.05 <i>c/b</i>	D 1 0.10	0.1	.5

第2図 翼端すき間と漏れ流量の関係 Fig. 2 Leakage flow rate through nozzle

ている.なお、 b_2 はノズルベーンの高さであるので、ノズ ル流路高さは、ベーン高さに翼端すき間を加えた $b_2 + c$ と なる.

既報で述べたように、ベーンの圧力面と負圧面間の圧力 差および壁近傍における半径方向速度の増加に伴い、開度 小の漏れ流量が大きい.また、開度一定の下では、*W_c/W* はすき間比に比例する.

第3図に翼端すき間比とノズル前縁-後縁間の全圧損 失係数の関係を示す.ここでは、全圧損失係数をノズル ベーン前後の全圧差をノズル出口の動圧で無次元化した ものとして定義した. 第3図には流れ場の平均値を流量 平均(mass average)と混合平均(mixed out)で求め、そ れぞれの平均化手法によって算出された、2種類の全圧損 失係数($\xi_m \geq \xi_x$)が示されている.

開度大では,流量平均から求めた全圧損失係数(*ξ_m*)と 混合平均から求めた全圧損失係数(*ξ_x*)は翼端すき間比に よらずほぼ一定である.このため,翼端漏れ流れによる損 失係数の変化は無視して良いレベルであると考えられる.

開度小の場合,すき間比が 0.2%以下では,漏れ流量が 0 で,翼端漏れ流れの影響はない.すき間比が 0.3%以上 では, ξ_m , ξ_x はすき間比とともに増加するが,すき間比が 1.5%以上で ξ_m は一定となる.**第4図**に開度小における

第3図 翼端すき間と全圧損失係数の関係 Fig. 3 Total pressure loss coefficient

壁付近の全圧,速度分布を示す.全圧が極小となる位置が 翼端漏れ渦の中心であり,この位置と壁からの距離が渦 の半径であると考えることができる. 翼端すき間の増加 に伴い渦中心が壁面から遠ざかり,渦の影響領域(低全 圧領域)が拡大する.一方,この領域の半径方向速度は すき間とともに増加する.このため,流量と全圧の積をス パン方向に積分し,これを流量で割ったノズルベーン下流 の流量平均全圧は、すき間の増加に対する減少関数とはな らず,*ξ_m*がすき間比 1.5%以上で一定となったと考えられ る.一方,翼端すき間の増加に伴い壁近傍における速度, 全圧の非一様性が拡大するため,混合損失は増加し,*ξ_x* はすき間比の増加関数となる.開度小側のノズル性能を考 える際には,漏れ渦によって生じる流れの分布に伴う混合 損失を考慮する必要がある.

3. ノズル性能とタービン性能の関係

CFD を用いて VGS タービンを解析しノズル翼端すき間 がタービン性能に及ぼす影響を詳細に調べた.検討に使用 したノズルとインペラ形状を第5図に、寸法を第3表に 示す.インペラ出口シュラウド半径、ノズル前縁・後縁 半径はインペラ入口半径を基準に無次元化されている.ま た、スロート幅は翼端すき間のある開度大のスロート幅に 対する相対値である.なお、0.2 mmの翼端すき間は実機 の翼端すき間と同じである.検討は以下の手順で行った. まず、翼端すき間のあるノズル(c=0.2)とインペラの一 体解析を行い、流量-圧力比の関係を求めた.その後、翼 端すき間がないノズル(c=0.0)とインペラの一体解析を 実施した.このノズルは、翼端すき間があるタービンと同 じ流量-圧力比特性を実現するように c=0.2 のノズルを 回転したものである.本ノズルの回転角は開度小の場合、 ノズル開度(スロート幅)が増加する方向に 0.75 度、開

Fig. 5 Schematic of impeller and nozzle vane

第3表 インペラ・ノズル寸法 Table 3 Impeller and nozzle main dimensions

(a) インペラ								
インペラ入口半径	出口シュラウド半径	インペラ翼高さ	翼枚数 (一)					
(-)	(-)	(mm)	試 験	CFD				
1.0	0.933	10.9	10	11				

(b) ノズル

開 度	項目	入 口 角 度 (度)	出 口 角 度 (度)	ノズル 翼高さ (mm)	ノズル翼端 すき間 (mm)	スロート幅 (一)	ノズル前縁 半 径 (一)	ノズル後縁 半 径 (一)	翼枚数 (一)
開度小	<i>c</i> = 0.2	74.20	82.70	10.7	0.2	0.245	1.482	1.278	11
	<i>c</i> = 0.0	73.45	81.95	10.9	0.0	0.267	1.487	1.272	11
開度大	<i>c</i> = 0.2	49.93	51.73	10.7	0.2	1.000	1.642	1.058	11
	<i>c</i> = 0.0	59.33	52.67	10.9	0.0	0.986	1.638	1.065	11

度大の場合、ノズル開度(スロート幅)が減少する方向 へ 0.94 度であった.両者の解析結果を比較して、翼端す き間の有無がタービン性能へ及ぼす影響を調べた.なお、 計算時間を短縮するため、ノズルとインペラの翼枚数を同 ーにし、フローズンロータモデルを用いて解析を行った. スクロールは考慮せず、インペラ径の 2.4 倍の位置に計算 領域入口を設け、流れ角と全温を固定し、全圧をパラメー タに計算を行った.流れ角にはスクロール出口流れ角(設 計値 68 度)を与えた.出口境界はインペラブレードの回 転軸方向高さの 3.75 倍の位置にあり、静圧一定(大気圧) の条件を用いた.**第4表**に計算に用いた格子点数を示す.

CFD の精度を検証するために,**第5**図に示すノズル とインペラをもつ VGS タービンの実験を行った.翼端 すき間は計算と同様に c = 0.2 mm である.**第6**図に実 験値と CFD の比較を示す.**第6**図はノズル入口とノズ ル出口(インペラ入口)の静圧比(P_1/P_2),インペラ 入口とインペラ出口の静圧比(P_2/P_3),ノズル入口とイ ンペラ出口の静圧比(P_1/P_3)とタービン効率を示してい

る. N(rpm)は回転数, P₀はタービン入口全圧, T₀はター ビン入口温度を示す. 開度小の場合, 計測された静圧比と CFD は比較的良い一致をしている. 効率については定性 的に良い一致をしている. 開度大の場合, CFD で得られ た流量係数 ($GT_0^{0.5}/P_0$) は実験値に対して 11%大きく,ノ ズルの静圧比 P1/P2は 12%小さい. 開度大ではノズルベー ン前縁がスクロール出口に接近する.このため、スクロー ルからの不均一な流れが一様化することなくベーンへ流入 し、ノズル内に付加的な全圧および静圧低下を引き起こす。 CFD ではスクロールの流れに起因してノズル内に発生す る全圧および静圧の低下を考慮していない.このため、実 験値と CFD のかい離が大きくなっていると考えられる. 開度大の場合,実験値と CFD の差異は大きいが、ノズル の静圧比が小さく、インペラがチョークする定性的な傾向 をとらえているため, CFD は流れ場の特徴を再現してい ると推定できる. なお, 効率の計測値はタービン入口, 出 口配管で計測された圧力を用いて算出した.また、効率の CFD は計算領域入口と出口の状態量から算出している.

開 度	п	1 - 7 11	ノズル翼	端すき間	1.2.00 -	インペラ
	項 日	1210	ハブ	シュラウド	1 2 1 7	クリアランス
開度小	<i>c</i> = 0.2	$85 \times 45 \times 85$	37 × 35 × 13	$37 \times 35 \times 25$	$150 \times 45 \times 85$	57 × 35 × 25
	<i>c</i> = 0.0	$85 \times 45 \times 73$	—	—	$150 \times 45 \times 73$	57 × 45 × 25
開度大	c = 0.2	$77 \times 45 \times 77$	37 × 27 × 13	$37 \times 37 \times 21$	$146 \times 45 \times 77$	57 × 35 × 21
	<i>c</i> = 0.0	77 × 45 × 65	_	_	$146 \times 45 \times 65$	57 × 35 × 21

第4表 格子点数 Table 4 Number of computational grid

(注)(流れ方向)×(周方向)×(スパン方向)

第6図 実験結果と CFD 結果との比較 Fig. 6 Comparison between measurements and CFD results (Nozzle vane clearance c = 0.2)

第7図に CFD で得られたタービン性能とインペラ効率を示す.タービン性能は計算領域入口,出口の状態量を混合平均して算出した.インペラ効率は,インペラ前縁,後縁での状態量を混合平均して求めた.開度小の場合, *c* = 0.2のタービン効率は *c* = 0.0 に比べ約 10 ポイント低く,インペラ効率は約5 ポイント低い.一方,開度大の場合,その差は,タービン効率,インペラ効率ともに,1.5 ポイント低い.

第5表に示す解析点で,各ノズル下流のインペラ内部 流れを詳細に比較した.**第8**図にインペラ前縁における 半径方向速度(*C_r*),周方向速度(*C_u*),絶対流れ角およ び相対流れ角のスパン方向分布を示す.

開度小の場合, c=0.0 よりも c=0.2 の方が, 壁近傍に

おける流れの非一様な領域が広い. 1 章で述べた理由から c = 0.2の半径方向速度は壁近傍ではc = 0.0より大きくな り,主流では小さくなっている.この主流の半径方向速度 成分の低下は,主流の相対流れ角の増加につながる.ラジ アルタービンインペラの場合,相対流れ角がインペラへの インシデンス角となる.このため,c = 0.2のインシデン スロスはc = 0.0よりも大きくなることが推定できる.開 度大の場合は,c = 0.0よりc = 0.2の方が,わずかではあ るが,スパン方向全体に渡り相対流れ角が小さく,インペ ラに対する負のインシデンスが大きい.このため,c = 0.2の効率がc = 0.0より低下していると推定される.以下に, 各開度におけるインペラ内部の流れ場について説明する.

第7図 タービン性能とインペラ効率 (CFD 結果) Fig. 7 CFD results of impeller and turbine performance (Nozzle vane clearance c = 0.2, c = 0.0)

第5表 解析点 Table 5 Operational points to examine the flow field

開	度	項	目	$G(T_0)^{0.5}/P_0$	$N/T_0^{0.5}$	膨張比	効 率
88 dis J.		<i>c</i> =	0.2	$1.35 imes 10^{-5}$	3 230	2.19	0.634
	<i>c</i> =	0.0	1.34×10^{-5}	3 230	2.18	0.718	
開度大	<i>c</i> =	0.2	4.18×10^{-5}	3 288	1.57	0.731	
	<i>c</i> =	0.0	4.17×10^{-5}	3 288	1.57	0.745	

(1) 開度小の場合

第9図にインペラのミッドスパン位置における相 対速度ベクトル,エントロピ分布を示す.c = 0.2の はく離領域がc = 0.0 よりも大きいことが分かる.第 10図にインペラの限界流線,第11図にインペラのハ ブ近傍と,ミッドスパン位置を通過する流線を示す. 第11図はノズルがc = 0.2の場合である.第12図に c = 0.0 と c = 0.2の等エントロピ面を示す.ここでの エントロピは、インペラ入口での流量平均エントロピ からの増分を示している.ミッドスパン位置でのイン ペラへの流入角は 60 度以上あり、インペラ入口部に 循環を伴うはく離域が形成される. このはく離によっ てインペラ入口ハブ近傍に渦が誘起される.この渦は、 インペラ上流部のはく離の核となりシュラウド側負圧 面に沿って流出する. c = 0.2 のはく離域は c = 0.0 よ り大きいため、c = 0.2のインペラ入口ハブ面近傍に おけるエントロピの増分(損失)は, c = 0.0より大 きくなる. 開度小の場合、インペラの仕事は主に入口 部で成されるため、下流で発生する仕事は小さい、こ のため, 圧力面と負圧面の圧力差は小さく, インペラ 翼端漏れ流れに起因する損失は小さい.ノズル翼端す き間は、インペラへ流入する流れの周方向速度の増加 を妨げる効果がある.このため、インペラからある仕 事を取り出そうとする時、翼端すき間がある場合は、 翼端すき間がない場合と比べ,ベーン取付角を大きく する必要がある.この取付角の増加はインペラ内での インシデンスロスを増大させ、効率低下を引き起こす.

(a) c = 0.2

(b) c = 0.0

第 10 図 限界流線(開度小) Fig. 10 Limited streamline (Smallest opening)

(a) ハブ近傍

(b) ミッドスパン位置

第11図 インペラ前縁を通過する流線(開度小) Fig. 11 Streamline passing impeller leading edge (Smallest opening)

(2) 開度大の場合

第 13 図にインペラのミッドスパン位置におけるエントロピ分布および翼前縁近傍の相対速度ベクトルを示す.わずかであるが c = 0.2のはく離領域が c = 0.0よりも大きい.また,ノズル後流が拡散することなく

第 12 図 等エントロピ面(開度小, R:気体定数 ΔS:エントロピ)
 Fig. 12 Entropy iso-surface

 (Smallest opening, R: Gas constant ΔS: Entropy)

Fig. 13 Relative velocity and entropy distribution (Largest opening, Mid span position)

インペラへ流入していることが分かる. 第 14 図 ~ 第 16 図に c = 0.2 の流線,等エントロピ面,インペ ラ出口におけるエントロピ分布を示す.インペラ入 口では,インペラに流入する流れが負のインシデン スをもつため,圧力面側に,はく離を生じエントロ ピが増加(損失が発生)する(第 13 図参照).ま た,インペラ入口部では負圧面の圧力が圧力面の圧力 より高くなるため,この部分から発生する仕事は小さ く,インペラ下流部が成す仕事が大きくなる.このた め,インペラ入口より下流では圧力面と負圧面の圧力

第14図 インペラ前縁を通過する流線(開度大) Fig. 14 Streamline passing impeller leading edge (Largest opening)

第15図 等エントロピ面(開度大,エントロピ/気体定数=0.5)
 Fig. 15 Entropy iso-surface

 (Largest opening, Entropy /Gas constant = 0.5)

第16図 エントロピ分布 (開度大,インペラ出口位置) Fig. 16 Entropy distribution (Largest opening, Mid span position)

差が大きくなり、インペラ前縁より下流では、圧力面 から負圧面に向かう漏れ流れによって負圧面に翼端漏 れ渦が形成されシュラウド側に沿って流出する. この ため、インペラ出口ではシュラウド側負圧面のエント ロピが大きくなる. $c = 0.0 \ge c = 0.2$ の流れ場に顕著 な差は見られなかった. 開度大では、ノズル流出角が ノズル流入角より小さくなる. 翼端すき間を通過する 流れが,ノズル流出角より大きい場合,ノズル翼端す き間はインペラへ流入する流れの周方向速度の増加を させる効果がある、このため、インペラからある仕事 を取り出そうとする時, 翼端すき間がある場合は, 翼 端すき間がない場合と比べ、ベーン取付角を小さくす る必要がある.この取付角の減少はインペラでのイン シデンスロスを増大させ、効率低下を引き起こす.し かし、この取付角の減少に伴う効率低下は、開度小の 場合と比較して小さく、ノズル翼端すき間の有無がイ ンペラ内部流れに及ぼす影響は小さい.

4. 結 言

- (1) ノズル開度小の場合, 翼端すき間の増加は, 壁面 近傍にできる速度, 全圧分布を増大させ, ノズル下 流の混合損失を増大させる. その結果, 翼端すき間 の増加によってノズル性能が低下する. 一方, ノズ ル開度大の場合, 翼端すき間の増加によるノズル性 能の低下は小さい.
- (2) インペラからある仕事を抽出するとき、ノズル 翼端すき間があると、翼端すき間がない場合と比べ、

インペラに対する正または負のインシデンスが増加 してインペラ性能が低下する.

- (3) ノズル開度小の場合、ノズル翼端すき間は、イン ペラへ流入する流れの周方向速度の増加を妨げる効 果がある.このため、インペラからある仕事を取り 出そうとする時、翼端すき間がある場合は、翼端す き間がない場合と比べ、ベーン取付角を大きくする 必要がある.この取付角の増加はインペラ内での正 のインシデンスを増加させる.その結果、インシデ ンスロスが増大し、大きな効率低下を引き起こす.
- (4) ノズル開度大の場合、ノズル翼端すき間は、イン ペラへ流入する流れの周方向速度を増加する効果が ある.開度大の作動点で要求される仕事を取り出そ うとする時、翼端すき間があると、翼端すき間がな い場合と比べ、ベーン取付角を小さくする必要があ る.この取付角の減少はインペラでの負のインシデ ンスを増加させる.その結果、インシデンスロスを 増大させ、効率低下を引き起こす.しかし、この取 付角の減少に伴う効率低下は、開度小と比較して小 さく、ノズル翼端すき間の有無がインペラ内部流れ に及ぼす影響は小さい.

参考文献

 (1) 玉木秀明,海野大ほか:ラジアルタービン可変 ノズル下流における流れ場
 石川島播磨技報第47
 号第1号 2007年3月 pp.16-24