A-USC ボイラ向け Ni 基合金のクリープ破断強度に及ぼす 冷間加工の影響

Effect of Cold Working on Creep Rupture Strength of Ni-Based Alloys for A-USC Boilers

塩	\mathbb{H}	佳	紀	資源・エネルギー・環境事業領域ボイラ SBU ボイラ設計部 博士(工学)
久才	百白	圭	司	技術開発本部基盤技術研究所材料研究部 主查 博士(工学)
野	村	恭	兵	技術開発本部基盤技術研究所材料研究部 博士(工学)
大	熊	喜	朋	資源・エネルギー・環境事業領域ボイラ SBU 基本設計部 主幹
中	Л	博	勝	資源・エネルギー・環境事業領域ボイラ SBU ボイラ設計部 部長

A-USC ボイラ向け Ni 基合金のクリープ破断強度に及ぼす冷間加工の影響を明らかにすることを目的に、クリー プ破断後のミクロ組織を電子顕微鏡により調査した. その結果, γ' 相析出強化型 Ni 基合金のクリープ破断強度に及 ぼす冷間加工の影響は, 粒界近傍の炭化物量に強く依存していた. 一方, Laves 相析出強化型 Ni 基合金の HR6W に 冷間加工を施すと, 粒界近傍の炭化物量が増加することに加え, 粒内では炭化物が転位上に微細析出し, それが長 時間安定であるためクリープ破断強度は著しく増加していた. また, 短時間クリープ試験により明らかとなった強 度メカニズムは, 長時間試験においても同様に発現することを確認した.

The purpose of this study was to clarify the effect of cold working on creep rupture strength in Ni-based alloys for A-USC boilers. It was revealed that the effect of cold working on the creep rupture strength of γ' phase precipitation strengthened Ni-based alloys strongly depends on the amount of carbide near the grain boundaries. On the other hand, when cold working is applied to the Laves phase precipitation strengthened Ni-based alloy HR6W, the amount of carbide near the grain boundary increases. In addition, fine $M_{23}C_6$ carbide precipitate on dislocations and it is stable for a long time. Therefore, the creep rupture strength of this alloy increases considerably. These strength mechanisms revealed in the short-term creep tests were found to be expressed similarly in the long-term tests.

1. 緒 言

石炭火力発電分野では、CO2 排出量の削減を目指し、 発電効率向上を実現させてきた、しかしながら、石炭火力 の発電効率向上はここ 20 年で飛躍的に向上したものの, ほかの発電技術に比べると CO₂ 排出量はまだ多い⁽¹⁾. そのため、石炭火力発電のさらなる高効率化が求められて いる、その方法の一つとして、次世代火力発電である A-USC (Advanced-Ultra Super Critical) プラントの開発 が挙げられる^{(2),(3)}. A-USC プラントでは 700℃超の蒸 気を用いる.その結果,A-USC ボイラでは高位発熱量基 準 (HHV: Higher Heating Value)の送電端効率が 42%か ら46~48%へ向上し、CO,排出量は現用の600℃級 USC (Ultra Super Critical)ボイラに比べ 10%以上低減で きると試算されている^{(2),(3)}. **第1図**に各種ボイラ材料 の 100 000 h クリープ破断応力と温度の関係を示す⁽⁴⁾. A-USC ボイラ配管の 700℃における 100 000 h クリープ 破断強度の目標は約 100 MPa である。そのため、現用の

USC ボイラで使用されている鉄鋼材料ではクリープ破断 強度は不足し、Ni 基合金を適用する必要がある。A-USC ボイラ候補材料の Ni 基合金は、析出物の違いにより大き く二つに分けることができる。青線で示す Alloy617, Alloy263 および Alloy740H では強化相として金属間化合 物である γ' 相(Ni₃(Al, Ti))を析出させることでクリープ 破断強度を向上させている(以下, γ' 相析出強化型合 金).一方、赤線で示す HR6W では、強化相として γ' 相とは別の金属間化合物である Laves 相(Fe₂W)を析出 させることでクリープ破断強度を向上させている(以下, Laves 相析出強化型合金).

上述のように A-USC ボイラでは Ni 基合金を採用する 必要がある.しかしながら,これまで Ni 基合金をボイラ 配管に適用した例はない.そのため,Ni 基合金を適用す るには溶接技術および加工技術を新たに確立する必要があ る.当社では 2008 年から 2013 年にかけて A-USC ボイ ラの製造技術の確立に取り組んできた^{(5),(6)}.2014 年か らは、実缶試験に向けた設計・製造を行い,2015 年から

第1図 ボイク材料の100 000 h 応刀 Fig. 1 100 000 hours creep rupture strength of boiler materials

2016 年にかけては, 商用石炭焚きボイラに Ni 基合金を 挿入した実缶試験を約 700℃の蒸気条件下で約 13 000 h 実施した⁽⁷⁾.現在, 実缶試験後のサンプルを調査中であ るが, これまでに調査した部位はいずれも健全であること を確認している^{(8), (9)}.

ボイラ材料は高温での長時間信頼性が重要となるため, 製造技術の開発と併せて,部材の長時間クリープ破断試験 を実施している.ボイラ配管には溶接および曲げ加工が多数施されるため,配管の直管部に加えて溶接部および冷間 加工部の長時間クリープ破断強度が非常に重要である.本 稿では,Ni基合金のクリープ破断強度に及ぼす冷間加工 の影響に重点を置き,報告する.

現用鋼および Ni 基合金のクリープ破断強度に及ぼす冷間加工の影響についてまとめたものを**第1表**に示す.現 用鋼では冷間加工の影響について多数報告されており,そ の強度メカニズムはミクロ組織の観点から明らかにされて いる^{(10)~(15)}.一方, Ni 基合金に対する冷間加工の影響 は,**第2図**に示すとおり Ni 基合金によって異なる⁽¹⁶⁾. しかしながら,その強度メカニズムをミクロ組織の観点か ら明らかにした報告例はない.加えて,**第1表**の現用鋼 を例に考えてみると,冷間加工を施した Ni 基合金のク

第1表 ボイラ材料のクリープ破断強度に及ぼす冷間加工の影響 **Table 1** Effect of cold working on creep rupture strength of boiler materials

Table 1 Effect of cold working on effect of cold and a set o									
ボイラの種類	合金	の種類	クリープ破断強度に及ぼす 冷間加工の影響		要因				
	7-5/1		短時間条件	- 低下	冷間加工で導入された転位が組織の回復・再結晶を促進する				
) エワイド;	1711月17日11日	長時間条件						
USC			短時間条件	増 加	冷間加工で導入された転位による炭化物の微細析出する				
	オーステナ	イト系耐熱鋼	長時間条件	低 下 (析出物量に依存)	冷間加工で導入された転位による炭化物の微細析出するもの の,炭化物の粗大化,ミクロ組織の回復が生じる				
		Alloy617		増 加					
A LICC	N: TAA	Alloy263	一 定		不 明				
A-USC	NI 本口玉	Alloy740H	低下 増加						
		HR6W							

リーブ破断強度は,長時間側で低下する可能性がある.そ のため,冷間加工を施した Ni 基合金の強度メカニズムを 明らかにし,100 000 h を超えるような領域でもクリープ 破断強度が低下しないかを予測することは極めて重要であ る.これまでの耐熱鋼の研究を振り返ると,冷間加工の影 響は,加工度および温度・応力などのクリープ条件により 大きく異なる^{(17),(18)}. Ni 基合金の冷間加工に関する研 究では,加工度の影響について調査されたものが多く,ク リープ条件によるクリーブ破断強度の変化を調査した研究 はない.

上記の背景を基に、本稿では A-USC ボイラ候補材料で ある Ni 基合金の Alloy617, Alloy263, Alloy740H およ び HR6W についてクリープ破断強度に及ぼす冷間加工の 影響を調査し、その強度メカニズムをミクロ組織の観点か ら明らかにすることを目的とした。また、Alloy617 およ び Alloy263 を例にして、冷間加工の影響がクリープ温 度、応力条件によりどのように変化するかを調査し、短時 間試験で明らかにした強化メカニズムが長時間試験におい ても発現するかを検討した。最後に、現用鋼と Ni 基合金 のクリープ破断強度に及ぼす冷間加工の影響をミクロ組織 の観点からまとめ、その影響がボイラ材料ごとに異なる理 由を述べる.

Ni 基合金のクリープ破断強度に及ぼす冷間加工 の影響

Ni 基合金のクリープ試験後のミクロ組織を**第3図**に示 す. クリープ試験は 750℃で実施した. **第3図**-(**a**), -(**c**)および-(**e**)はそれぞれ Alloy617, Alloy263 およ び Alloy740H の無ひずみ材, -(**b**), -(**d**)および-(**f**) はそれぞれ Alloy617, Alloy263 および Alloy740H の 15%予ひずみ材である. Alloy617 で観察される白色の析 出物は Mo 系炭化物の M₆C である. Alloy617, Alloy263 および Alloy740H の粒界および粒内に観察される黒色の 析出物は, それぞれ Cr 系炭化物の M₂₃C₆ および γ' 相で ある.

第3図-(a)に示す Alloy617 の無ひずみ材では粒内 に M₆C 炭化物が観察されるのに対し, -(b)に示す 15% 予ひずみ材では粒内に M₆C 炭化物はほとんど観察されな かった. 一方, 15%予ひずみ材では無ひずみ材に比べ結 晶粒界近傍での M₆C および M₂₃C₆ 炭化物の析出物量が 増加していた.

第3図-(c)および-(d)に示す Alloy263 ではひずみ

の有無によらず、粒内および結晶粒界近傍のミクロ組織に 有意な差は認められなかった.

一方, 第3図-(f)に示す Alloy740Hの15%予ひず み材では-(e)に示す無ひずみ材に比べ結晶粒界近傍の析 出物量が減少していた.その理由を明らかにするために, Alloy740Hの無ひずみ材および15%予ひずみ材にて EDX(Energy Dispersive X-ray)分析を実施した.その結 果を第4図に示す.第4図-(a)および-(b)は無ひず み材および15%予ひずみ材のSEM(Scanning Electron Microscope)像である.併せて,SEM像の下にCrおよ びTiの特性X線像を示す.無ひずみ材では粒界のみに Cr系炭化物が認められるのに対し,15%予ひずみ材では 粒内にCr系炭化物が析出していることが分かる.これ は、予ひずみにより導入された転位がCr系炭化物の粒内 析出を促進し、その結果として結晶粒界近傍のCr系炭化

Laves 相析出強化型合金 HR6W の無ひずみ材および 15%予ひずみ材のミクロ組織を第3図-(g) および -(h)にそれぞれ示す. 図中の白色の析出物は Laves 相で あり, 灰色の析出物は Cr 系炭化物の M₂₃C₆ である.

15%予ひずみ材では無ひずみ材に比べ結晶粒界近傍の M₂₃C₆ 炭化物が増加していた.

以上より、予ひずみ材のクリープ中に生じる粒界近傍の 炭化物量は Ni 基合金によって異なることが分かった. そ こで、各 Ni 基合金の炭化物による粒界被覆率を算出し た. 粒界被覆率とは粒界上に占める析出物の割合のことで ある. 第5図に Ni 基合金の粒界被覆率と予ひずみ量の 関係を示す. 予ひずみ量に伴う粒界被覆率の変化挙動は、 第2図に示すクリープ破断強度の変化挙動とよく一致し た. すなわち、クリープ破断強度が予ひずみ量の増加に伴 い増加する Alloy617(◇) および HR6W(●) では、 粒界被覆率も予ひずみ量に伴い増加した. 一方、クリープ 破断強度が予ひずみ量によらず一定であっ た. これらに対し、Alloy740H(○) では予ひずみ量によ りクリープ破断強度は低下し、粒界被覆率も同様に減少し た.

一般に粒界の析出物が増加すると、クリープ破断強度は 増加すると考えられており、第2図および第5図はその ことを反映した結果といえる.以上より、冷間加工を施し た Ni 基合金のクリープ破断強度は粒界近傍の炭化物量と 相関があることを明らかにした.

(c) Alloy263 無ひずみ材

(e) Alloy740H 無ひずみ材

(b) Alloy617 15%予ひずみ材

(d) Alloy263 15%予ひずみ材

(h) HR6W 15%予ひずみ材

 $M_{23}C_{6}$

1 μm

(注) クリープ試験温度:750℃

第3図 Ni 基合金のクリープ試験後のミクロ組織 Fig. 3 Microstructures of Ni-based alloys after creep

(注) 🏠 : 粒内に析出した Cr 系炭化物

第4図 Alloy740HのEDX分析結果 Fig. 4 Results of EDX analysis for Alloy740H

ところで, 第2図より冷間加工を施した HR6W のク リープ破断強度の増加は, ほかの Ni 基合金に比べ著しく 大きいことが分かる.加えて, その強度増加は現用のオー ステナイト系耐熱鋼とは異なり, 長時間安定であると報告 されている^{(20),(21)}.それらの理由を明らかにするため に, 無ひずみ材と 15%予ひずみ材の粒内の析出物を比較 した.粒内の析出物は粒界に比べ非常に微細であるため, さらに高倍率で組織観察を実施した.なお,粒内の Laves 相のサイズにひずみ量による有意な差はないことを確認し ている. 第6図に無ひずみ材および予ひずみ材のミクロ 組織および EDX 分析結果を示す. 第6図-(a)および -(c)は無ひずみ材の破断材,-(b)および-(d)は15% 予ひずみ材の中断材である. 第6図-(c)および-(d) の EDX 分析結果から粒内の微細な析出物は Cr に富む M₂₃C₆炭化物と同定した. 第6図-(a)および-(b)の 観察結果から、予ひずみ材では無ひずみ材に比べ M₂₃C₆ 炭化物が微細化していることが分かる.加えて、EDX分 析結果から、予ひずみ材の M23C6 炭化物では無ひずみ材 に比べ W の相対ピーク強度が大きかった. そこで, M23C6 炭化物 30 個に対して粒径の算出および EDX 定量 分析を実施した.第7図に炭化物の粒径とW含有量の関 係を示す。併せて、粒界の炭化物に対して EDX を実施し た結果および熱力学計算ソフトの Thermo-Calc を用いて M23C6 炭化物中の W 量を計算した結果を示す. 無ひずみ 材では M23C6 炭化物の平均粒径は約 50 nm であったのに 対し、15%予ひずみ材では炭化物の平均粒径は約 30 nm であった.よって、予ひずみにより粒内の M₂₃C₆ 炭化物 が微細化することが明らかになった.

Ni 基合金およびオーステナイト系耐熱鋼では、 $M_{23}C_6$ 炭化物が転位上に微細析出すると、その $M_{23}C_6$ 炭化物は クリープ破断強度を向上させると報告されてい る^{(22)~(24)}.よって、予ひずみ材では冷間加工により導 入された転位上に $M_{23}C_6$ 炭化物が微細析出し、それがク リープ強化に作用したため、クリープ破断強度は向上した

Fig. 6 Microstructures of intragranular grain and results of EDX analysis taken from the precipitates of HR6W

と推察される.

一方, 第7図から微細な M₂₃C₆ 炭化物は W 含有量が
 多い傾向にあることが分かる.また,粗大な炭化物ほど
 W 含有量は少なく,その含有量は Thermo-Calc の計算値
 に近づく傾向にあった.このことは,微細な M₂₃C₆ 炭化
 物の多い予ひずみ材では,無ひずみ材に比べ M₂₃C₆ 炭化

第7図 $M_{23}C_6$ 炭化物の粒径とW含有量の関係 Fig. 7 The relationship between the diameter of $M_{23}C_6$ carbide and W content in $M_{23}C_6$ carbide of HR6W

物中の W 含有量が多いことを意味する.

現用鋼の Gr.92 鋼では Gr.91 鋼に比べ $M_{23}C_6$ 炭化物の 粗大化が著しく遅いと報告されている^{(25), (26)}. その理由 は、 $M_{23}C_6$ 炭化物中に W が濃縮することで、Cr の一部 が Cr よりも鉄中の拡散速度の遅い W によって置換さ れ、炭化物の成長が抑制されるためだと明らかにされてい る⁽²⁶⁾.本合金の予ひずみ材においても、 $M_{23}C_6$ 炭化物中 の W 量が多いため、炭化物の凝集・粗大化は遅延し、ク リープ破断強度は長時間安定だったと推察される.

以上より, HR6W の冷間加工材では無加工材に比べ析 出物による粒界強化に加え, 粒内強化が有効に作用するた め, ほかの Ni 基合金に比べ著しくクリープ破断強度が増 加すると考えられる.

冷間加工を施した Ni 基合金のクリープ破断強 度に及ぼすクリープ条件の影響

1章で述べたように、冷間加工材のクリープ破断強度は クリープ条件によって影響を受ける。特にオーステナイト 系耐熱鋼に冷間加工を施すと、短時間側でのクリープ破断 強度は著しく増加するが、10 000 h 以上の長時間側での クリープ破断強度は無加工材と同等以下になる。そのた め,短時間試験で明らかにした Ni 基合金の強化メカニズ ムが 10 000 h 以上の長時間試験においても発現するかを 検討することは極めて重要である.そこで本章では, Alloy617 および Alloy263 を例にして,冷間加工の影響が クリーブ温度,応力条件によりどのように変化するかを検 討した.なお,実機伝熱管の曲げ部を想定すると,冷間加 工度の大きい部位では最大 30%程度の冷間加工が施され るため, Alloy617 および Alloy263 に 30%の冷間加工を 施した.

Alloy617 の 30%予ひずみ材および無ひずみ材のクリー プ破断試験結果を**第8図**に示す.クリープ条件の影響を 把握するため、クリープ試験は温度 700 ~ 800℃,応力

80~350 MPa の条件で実施した. 高応力側ではクリープ 破断強度にひずみの有無による有意な差は認められなかっ た、一方、低応力側では予ひずみ材は無ひずみ材に比べて 高いクリープ破断強度を示し、その強度増加は約 20 000 h の長時間試験後においても認められた. 低応力側にて予ひ ずみ材のクリープ破断強度が増加した理由を明らかにする ため, 750℃, 170 MPa の中断材を用いて予ひずみ材と無 ひずみ材のミクロ組織を比較した. その結果を第9図に 示す. 第9図-(a)は無ひずみ材,-(b)は 30%予ひず み材である. 無ひずみ材では粒界近傍に析出物の存在しな い領域 (Precipitation Free Zone: PFZ) が観察されたのに 対し、予ひずみ材では PFZ は観察されなかった、また、 2章と同様、予ひずみ材では無ひずみ材に比べ粒界近傍の 析出物量が多かった.加えて、予ひずみ材では炭化物以外 に γ' 相も粒界近傍に優先析出している様子が観察され た.以上より、予ひずみ材では無ひずみ材に比べ粒界近傍 の析出物が多いため、粒界ピン止め効果が有効に働き、そ の結果として PFZ などの弱化組織の形成が遅延し、ク リープ破断強度が増加したと推察される(27).このよう に,2章で明らかにした Alloy617 の強化メカニズムが長 時間試験においても発現することが明らかとなった. な お、高応力側での予ひずみ材と無ひずみ材の組織変化につ いては有意な差は認められなかった.

次に, Alloy263 の 30%予ひずみ材および無ひずみ材の クリープ破断試験結果を**第 10 図**に示す. クリープ試験は 温度 750 ~ 800℃,応力 100 ~ 250 MPa の条件で実施し た. 30%予ひずみ材のクリープ破断強度は無ひずみ材に 比べ若干増加した. その理由を明らかにするため,800℃,

第9図 Alloy617 のクリープ中断材のミクロ組織 **Fig.9** Microstructures of Alloy617 interrupted at 750°C, 170 MPa

140 MPa の中断材を用いて予ひずみ材と無ひずみ材のミ クロ組織を比較した. その結果を第11 図に示す. 第11 図-(a)および-(c)は無ひずみ材,-(b)および-(d) は 30%予ひずみ材である. 2章と同様, 第11 図-(a) に示す無ひずみ材と-(b)に示す予ひずみ材の粒界近傍 の析出物量に有意な差は認められなかった. 一方, 第11 図-(c)および-(d)の観察結果から分かるように,予 ひずみ材では無ひずみ材に比べ粒内の $M_{23}C_6$ 炭化物およ び γ' 相は微細であった⁽²⁸⁾. このため, 30%予ひずみ材 では無ひずみ材に比べ粒内のクリープ強化が有効に働き, クリープ破断強度が若干増加したと考えられる.

4. 冷間加工を施した各種ボイラ材料のクリープ破 断強度とその強度メカニズム

各種ボイラ材料のクリープ破断強度に及ぼす冷間加工の 影響をミクロ組織の観点から述べる.まず,各合金の組織 の特徴を述べる.

フェライト系耐熱鋼は、焼戻しマルテンサイト組織であ り、微細な炭・窒化物を析出させることでクリープ破断強 度を向上させている.すなわち、フェライト系耐熱鋼では 熱処理により炭・窒化物を析出させることで、使用前から 高温強度を向上させている.オーステナイト系耐熱鋼は、 固溶化熱処理を施した材料であり、使用中に炭化物を析出 させることでクリープ破断強度を向上させている.以上の ことから現用鋼についてまとめると、フェライト系耐熱鋼 では使用前から炭・窒化物が析出しているのに対し、オー ステナイト系耐熱鋼では使用中に炭化物が析出する.一 方,Ni基合金は、オーステナイト系耐熱鋼と同様、固溶 化熱処理を施した材料であり、使用中に金属間化合物およ び炭化物を析出させることでクリーブ破断強度を向上させ ている.上記のように各種ボイラ材料によって析出物の析 出する時期が異なるため、冷間加工によって生じるクリー プ破断強度の変化はボイラ材料ごとに異なる.その変化の 違いを第12図に模式図で示す.また、冷間加工を施した 各種ボイラ材料のクリープ中に生じるミクロ組織変化を第 13図に模式図で示し、その詳細を以下に述べる.

フェライト系耐熱鋼では使用前の熱処理で炭・窒化物を 析出させるため、冷間加工により導入された転位上に新た に炭・窒化物が析出することはなく、転位はマルテンサイ ト組織の回復・再結晶を促進させる.この回復・再結晶 は、温度・応力のクリープ試験条件によらず生じる.その ため、第12図-(a)に示すように、冷間加工を施された フェライト系耐熱鋼のクリープ破断強度は、無加工材に比 べ低下する.

オーステナイト系耐熱鋼では使用中に炭化物が析出する ため、析出物は冷間加工の影響を受ける.すなわち、使用 中に冷間加工により導入された転位上に炭化物が微細に析 出し、それが強化として働くため、クリーブ破断強度は増 加する.この強度増加は、炭化物がより多く析出するオー ステナイト系耐熱鋼ほど長時間まで継続するものの、多く の合金では短時間側のクリープ条件のみ有効である.その 理由は、長時間試験では、炭化物の粗大化に起因し、導入 された転位が組織の回復・再結晶を促進させ、クリープ破 断強度の低下を引き起こすためである.そのため、冷間加 工を施されたオーステナイト系耐熱鋼のクリープ破断強度 は第12図-(b)のようになる.

Ni 基合金では使用中に炭化物が析出するため、オース テナイト系耐熱鋼と同様、析出物は冷間加工の影響を受け る.すなわち、本稿で明らかにしたように、使用中に析出 する粒界近傍の炭化物量は Ni 基合金によって異なり、そ の析出挙動はクリープ破断強度と相関がある.一方、粒内 に析出する金属間化合物は冷間加工の影響をほとんど受け ず、長時間試験後もほとんど粗大化しない.すなわち、冷 間加工を施した Ni 基合金のクリープ破断強度は、粒界近 傍の炭化物量に依存し、金属間化合物は長時間試験後も粗 大化しにくいため、Ni 基合金ではオーステナイト系耐熱 鋼で認められるような強度低下は生じないと考えられる. そのため、冷間加工を施された Ni 基合金のクリープ破断 強度は第12 図-(c)のようになる.

第 11 図 Alloy263 のクリープ中断材のミクロ組織 Fig. 11 Microstructures of Alloy263 interrupted at 800°C, 140 MPa

 ^{● :}炭・窒化物

● :金属間化合物

第13図 冷間加工によるクリープ破断後のミクロ組織の違い

Fig. 13 Schematic illustrations showing microstructures of cold worked various alloys after creep

^{● :}炭化物

本稿では、A-USC ボイラ向け Ni 基合金のクリープ破 断強度に及ぼす冷間加工の影響をミクロ組織の観点から明 らかにすることを目的とした.そのために、予ひずみ材と 無ひずみ材を用いてクリープ試験を実施し、ミクロ組織を 比較した.また、Alloy617 および Alloy263 を例にして、 冷間加工の影響が温度、応力などのクリープ条件によりど のように変化するかを調査し、短時間試験で明らかにした 強化メカニズムが長時間試験においても発現するかを検討 した.以下、得られた知見を述べる.

- (1) γ'相析出強化型 Ni 基合金のクリープ破断強度に 及ぼす冷間加工の影響は、粒界近傍の炭化物量に強 く依存することが明らかになった。
- (2) Laves 相析出強化型 Ni 基合金の HR6W に冷間 加工を施すと、粒界近傍の炭化物量が増加すること に加え、粒内に炭化物が転位上析出し、それが長時 間安定であるためクリープ破断強度は著しく増加す ることを明らかにした.
- (3) 短時間クリープ試験により明らかにした Ni 基合 金の強度メカニズムは,長時間試験においても同様 に発現することが分かった.

参考文献

- (1) 一般財団法人電力中央研究所:日本における発電 技術のライフサイクル CO₂ 排出量総合評価,
 2016年7月
- (2) 福田雅文ほか: A-USC 先進超々臨界圧火力発電 技術,火力原子力発電, Vol. 62, No. 10, 2011 年 10月, pp. 731 - 741
- (3) 高野伸一,青木 裕,久布白圭司,冨山信勝,中 川博勝:700℃級先進超々臨界圧(A-USC)ボイラ技 術の開発, IHI 技報, Vol. 49, No. 4, 2010 年 2 月, pp. 185 - 191
- (4) K. Kubushiro, K. Nomura and H. Nakagawa :
 Effect of Cold Work on Creep Strength of Nickel-Base Alloys, Proceedings of the "10th Conference on Materials for Advanced Power Engineering", (2014.9)
- (5) K. Kubushiro, K. Nomura, T. Matsuoka, H. Nakagawa and K. Muroki : Development of Boiler Technology for 700°C A-USC Plant, IHI Engineering Review, Vol. 49, No. 2, (2016.11), pp. 34 43

- (6) K. Kubushiro, K. Nomura, H. Nakagawa, Y. Ohkuma and K. Muroki : Development of Fabrication Technology for the A-USC Boiler, Proceedings of the International Conference on Power Engineering-15, (2015. 12), ICOPE-15-1167
- (7) T. Tokairin, K. Hashimoto, K. Kubushiro and M. Fukuda : Development of Boiler Material Technology and the Verification of its Practical Applicability in Japanese National A-USC Project, Proceedings of the "New Advances in Material and Component Assessment" 43rd MPA-Seminar, (2017. 10)
- (8) Y. Okuma, K. Kubushiro, M. Kitamura, Y. Tachikana and M. Fukuda : Overview and Result of Components Test on Commercial Coal Fired Boiler in Japanese National A-USC project, Proceedings of the "New Advances in Material and Component Assessment" 43rd MPA-Seminar, (2017. 10)
- (9) K. Kubushiro and A. Sato : Current States of the Ni-Based Alloys Development for A-USC Boilers, IUMRS-ICA2017, (2017.11)
- (10) J. Gabrel, W. Bendick, C, Zakine and B. Vandenberghe : COLD BENDING OF BOILER TUBES IN NEW GRADES, Proceedings of Creep8 8th International Conference on Creep and Fatigue at Elevated Temperatures, CREEP2007-26571, (2007.7)
- (11) A. Iseda, M. Kubota, Y. Hayase, S. Yamamoto and K. Yoshikawa : Application and Properties of Modified 9Cr-1Mo Steel Tubes and Pipe for Fossil-fired Power Plants, The Sumitomo Search, No. 36, (1988. 5), pp. 17 - 30
- (12) F. Abe : Effect of Quenching, Tempering, and Cold Rolling on Creep Deformation Behavior of aTempered Martensitic 9Cr-1W Steel, Metall. and Mater. Trans. A34A, (2003.4), pp. 913 - 925
- (13)塩田佳紀,久布白圭司,村田純教:改良9Cr-1Mo 鋼のミクロ組織に及ぼす冷間加工と焼戻し熱処理の 影響,熱処理, Vol. 57, No. 6, 2017年12月, pp. 343 - 350
- (14) F. Masuyama : Cold Work Effect on Creep Rupture Strength of Austenitic Boiler Steels, Proceedings of Creep8 8th International Conference on Creep and Fatigue at Elevated Temperatures, CREEP2007-26469

- (15) N. Saito and N. Komai : Creep Deformation Behavior and Microstructural Degradation During Creep of Pre-Strained 25Cr-20Ni-Nb-N Steel, ASME Proceedings CREEP2007-26764
- (16) K. Kubushiro, Y. Shioda and K. Nomura : Effect of Pre-strain on the Creep Strength of Ni-Based Alloys for A-USC Boilers Trans Indian Inst Met, Vol. 70, (2017.7), pp. 1261 - 1268
- (17) Frank Garofalo 著,足立正雄訳:金属のクリープの基礎,丸善,1968年,pp.40-43
- (18)古田照夫,小川 豊,長崎隆吉:高速炉燃料被覆
 管用 316 ステンレス鋼のクリープ特性におよぼす冷間加
 工度の影響,鉄と鋼, Vol. 59, No. 7, 1973 年, pp. 949
 954
- (19) K. Kubushiro, K. Nomura, S. Takahashi, M. Takahashi and H. Nakagawa : Effect of Pre-strain on Creep properties of Alloy740, Proceedings of the 6th International Conference on Advances in Materials Technology for Fossil Power Plants, (2010.8), pp. 164 170
- (20)岡田浩一,仙波潤之,石川茂浩,吉澤満:
 23Cr-45Ni-7W 合金のクリープ特性に及ぼす冷間加工の影響,鉄鋼協会第163回春季講演大会概要集, Vol. 25,2012年3月,p.405
- (21) N. Saito, N. Komai and K. Hashimoto : LONG-TERM CREEP RUPTURE PROPERTIES AND MICROSTRUCTURES IN HR6W (44Ni-23Cr-7W)
 FOR A-USC BOILERS, Proceedings of the 8th International Conference on Advances in Materials Technology for Fossil Power Plants, (2016. 10), pp. 419 - 429

- (22)美野和明,大友 暁,雑賀喜規: Inconel 617 合金のクリープ強度におよぼす粒界移動および再結晶の影響,鉄と鋼, Vol. 63, No. 14, 1977 年, pp. 2 372 2 380
- (23)張 俊善,竹山雅夫,松尾 孝,菊池 實,田中 良平:Ni-20Cr 合金の高温クリープ特性に及ぼす炭 素の効果,鉄と鋼, Vol. 73, No. 1, 1987年, pp. 183 - 190
- (24) Y. Shioda, K. Kubushiro, Y. Sakakibara, K. Nomura and Y. Murata : The Effect of cold working on creep rupture strength and microstructure of Ni-23Cr-7W Alloy, World Journal of Mechanics, (2017. 10), pp. 283 295
- (25) J. Hald : Microstructure and long-term creep properties of 9–12% Cr steels, International Journal of Pressure Vessels and Piping, Vol. 85, (2008), pp. 30 - 37
- (26)吉澤満,五十嵐正晃,西澤泰二:マルテンサイト系耐熱鋼中のM₂₃C₆のオストワルド成長に対するWの影響,鉄と鋼, Vol. 91, No. 2, 2005年, pp. 272 277
- (27) Y. Shioda, K. Nomura, K. Kubushiro and Y. Murata : Effect of Cold Working on Creep Rupture Strength of Alloy617, International Journal of Materials Science and Applications, Vol. 6, Iss. 4, (2017.6), pp. 178 189
- (28) N. Kanno, Y. Shioda and K. Kubushiro : Effect of Cold Work on Creep Rupture Strength of Alloy263, International Journal of Materials Science and Applications, Vol. 6, Iss. 5, (2017.9), pp. 260 -268