Development of Seismic Performance Evaluation Method Considering Fracture of Structural Members

 塩
 見
 謙
 介
 技術開発本部基盤技術研究所振動・トライボロジー研究部

 和
 田
 悠
 佑
 技術開発本部基盤技術研究所振動・トライボロジー研究部

 岩
 本
 浩
 祐
 技術開発本部基盤技術研究所振動・トライボロジー研究部

南海トラフ地震のような巨大地震に対し,鉄骨部材が地震中に塑性変形領域を超えて破断し,剛性を失う挙動を 数値解析に組み込むことで,構造物内の部分的な破壊を考慮しつつ,構造物全体の耐震性能を推定できる評価手法 を開発した.また,鉄骨部材の破断までの挙動の把握を目的とした振動台試験を実施し,鉄骨部材の破断判定基準 も構築した.さらに,開発した手法を単純な鉄骨構造物に適用し,地震中の鉄骨部材の破断が構造物全体の耐震性 能に与える影響を検討した.本稿ではこれらの結果について述べる.

A seismic performance evaluation method has been developed which can consider the effect of the fracturing of steel-frame structural members due to severe ground motions during earthquakes, such as the Nankai Trough Earthquake. This method incorporates the behavior of structural members which exceed the range of plastic deformation and result in fracturing and losing stiffness. This paper presents an outline of the analysis method and a shaking table test which was conducted to obtain the cumulative deformation performance of steel-frame members and to determine the fracture judgment condition in the analysis procedure. Also, through an application of the proposed analysis method to a simple steel-frame structure, the effects of member fracture on seismic performance is discussed.

1. 緒 言

南海トラフ地震や首都直下地震のような高レベル地震を 想定した地震対策が進められている。当社グループが納め る発電プラント,貯蔵設備,運搬荷役設備といった既設の 大型鉄骨構造物についても,設計用地震動の見直しと耐震 性能の再評価,耐震補強による高耐震化が進められている。

これらの高レベル地震に対しては,鉄骨構造物を構成す る柱,梁,筋違い材などの鉄骨部材を全て無損傷とする (弾性範囲にとどめる)設計は不合理的かつ非経済的であ り,一部の部材の降伏や座屈など,一定の損傷を許容する 設計(限界状態設計⁽¹⁾)が許容されている.

一方,兵庫県南部地震(1995年)や東北地方太平洋沖 地震(2011年)などの発生を通じ,耐震設計・再評価に 用いられる設計用地震動のレベルは年々引き上げられ,現 在では極めて過酷な地震動に対する耐震性能の確保が要求 されている.このような巨大地震に対しては,鉄骨部材の 損傷レベルは塑性化や座屈などを超え,破断し剛性を失う 状態に至る可能性がある.

現状の耐震性能評価手法では,塑性化や座屈などの鉄骨 部材の損傷はある程度表現される一方で,さらに過大な荷 重が作用することにより,部材が破断し剛性を失う挙動は 考慮されていない. 部材の破断は構造物の耐震性能に大き な影響を与えることが予想されるため, 巨大地震に対する 耐震性能評価を実施する際は, これらの部材破断による影 響を精度良く評価することが求められる.

また近年では、土木分野における危機耐性⁽²⁾や、原子 力分野における Beyond Design Basis Event (BDBE)⁽³⁾ に代表されるように、設計想定以上の巨大地震に対し、構 造部材の破壊をも含めた極限状態の構造物の状態を明らか にする取組みや、部分的な破壊を許容しつつ、構造物全体 の倒壊など、最悪の破壊モードを防止する耐震構造に関す る取組みが始まっている.このような概念は、部材破断な どの破壊現象を前提とした設計・評価となっていることか ら、地震時の破壊の影響を精度良く考慮することが必要で ある.

これらの課題を解決するため,筆者らは地震中に部材が 破断し,剛性を失う挙動を考慮した数値解析手法の構築に 取り組んでいる^{(4),(5)}.本手法を確立し,当社グループ 製品の耐震性能評価に適用することで,巨大地震を受ける 構造物の部材破断を含めた極限状態での挙動が解明され, 構造物がもつ真の耐力を明らかにできる.これにより,構 造物の耐震性能を最大限に引き出すことが可能となり,倒 壊など最悪の破壊モードを防止するために最低限必要な鉄 骨物量を明らかにし、巨大地震に対して必要な耐震性能を 有した上で、経済的かつ合理的な構造が実現できる。

本研究では,耐震性能評価で一般的に使用される数値解 析コードに,新たに部材が破断する挙動を組み込むこと で,地震中の部材破断を考慮できる数値解析手法を構築し た.部材が破断と判定する条件は,鉄骨部材の破断に至る までの累積変形性能の取得を目的とした振動台試験の実施 により,筆者らが独自に決定した.

本稿では、これらの概要と構築した数値解析手法の適用 例を通じた、鉄骨部材の破断が構造物全体の耐震性能に与 える影響に関する検討結果について述べる。

2. 鉄骨の破壊を考慮した数値解析手法

2.1 解析手法のスキーム

巨大地震を対象とした現在の耐震性能評価では、地震動 波形を入力する時刻歴応答解析による照査が用いられるの が一般的である.これは、解析全体を細かい時間ステップ に分割し、時間ステップを少しずつ進めながら構造物の変 形を時々刻々求める手法であり、材料の弾塑性変形のよう な非線形挙動や、地震時の過渡的な応答を精度良く求める ことが可能である.鉄骨構造物の場合は、有限要素法 (Finite Element Method:FEM)を用いることが多く、本 稿では解析ソルバーとして、汎用 FEM コードである Abaqus/Standard (ダッソー・システムズ社)を用いる.

Abaqus のような汎用 FEM コードでは、鉄鋼材料の弾 塑性挙動は幅広くサポートされているが、鉄骨部材が破断 し剛性を失う挙動は一般的に考慮されていない、そこで筆 者らは、Abaqus のユーザ組込み機能であるユーザサブ ルーチンを用い、この挙動を追加的に既存の材料モデルに 組み込むことで、部材の破断挙動を実現した。

部材破断を考慮した数値解析手法のフローを第1図に 示す.特に大きな荷重を受ける構造部材など,破断を考慮 する部材(要素)に対し,現時刻の状態(解析で算出さ れた荷重,ひずみなどの応答値)を,別途定義した鉄骨 部材を破断と判定する条件と,各時間ステップにおいて照 合し,条件を満たさない場合は特に処理を行わず,そのま ま次時間ステップへ進む.一方で破断判定条件を満たした 場合,当該要素の剛性(ヤング率)を0へと変更し,荷 重を一切負担させなくすることで,部材が破断し,剛性を 失う挙動を表現する.一度破断と判定された要素は破断状 態のまま,解析終了までその状態が継続する.

ここで、鉄骨部材を破断と判定する条件は、ユーザが任

第1図 部材破断を考慮した数値解析手法フロー Fig. 1 Flow of numerical analysis procedure that takes fracture of structural members into consideration

意に設定することが可能である。一般的に鉄骨部材は、
① 過大な力が掛かった場合、② 繰り返し大変形が作用した場合、に破断することが想定される。例えば、①の場合は解析で算出された断面力がある基準値を超えること、
② の場合は解析開始からの累積的な変形量がある基準値に到達すること、が条件となる。

2.2 着目する破壊形態

巨大地震時に鉄骨構造物に生じる破壊形態にはさまざま なものが考えられる。特に近年では、東北地方太平洋沖地 震のような長周期・長時間地震動による多数の繰り返し荷 重を原因とする、鉄鋼材料の低サイクル疲労による部材破 壊の危険性が指摘されている。そこで本評価手法では、特 に鉄骨部材の低サイクル疲労破壊に焦点を当て、この破壊 形態を精度良く評価する数値解析手法を構築する。

3. 振動台試験による検証

精度の良い破断判定条件を設定するには,鉄骨部材が地 震動のような動的荷重による繰り返し変形を受け,実際に 破断に至るまでの挙動を実験的に把握する必要がある.そ こで当社が保有する三次元 6 自由度大型振動台を用い, 鉄骨部材に繰り返し変形を与え,破断を生じさせる振動台 試験を実施した.

3.1 振動台試験の概要

第2図に三次元6自由度大型振動台の外観を示す.本

 (注) 最大積載量:35t 最大加速度:(最大積載状態) 水平方向±14.7 m/s² 上下方向±9.8 m/s²

振動台は 8 本の油圧式アクチュエータで制御されており, 水平 2 方向・上下方向と,それらの回転方向である合計 6 自由度について,任意の揺れを発生させることが可能で ある.最大積載量は 35 t であり,最大加速度は最大積載 状態において水平方向 ±14.7 m/s²,上下方向 ±9.8 m/s² である. **第3図**に試験セットアップを,**第4**図に対象とする鉄 骨構造物を示す.試験体は**第4図**-(**a**)に示すような, 火力発電プラントの支持鉄骨に供用される柱・梁接合部 (**第4図**-(**b**))を模擬したものであり,柱が水平方向を 向くように 90°横倒しして振動台上に設置している.梁の 先端には,**第3図**-(**a**)に示す錘が取り付けられている. 錘の底面には車輪(**第3図**-(**b**))が取り付けられてお り,錘は振動台上に配置した走行板上を滑らかに運動す る.この状態で試験体を**第3図**-(**a**)に示す水平方向に

(a) 建設中の火力発電プラント支持鉄骨

柱(角型鋼管)

第4図 対象とする鉄骨構造物 Fig. 4 Envisaged steel-frame structures

梁(H 形鋼)

第3図 試験セットアップ(単位:mm) Fig. 3 Setting up shaking table test (unit:mm)

加振することで、繰り返し曲げ変形を柱・梁接合部に作用 させる.柱・梁接合部に目立った破壊が生じるまで繰り返 し変形を与え、それまでの変形を計測することで、鉄骨部 材が破断に至るまでの挙動を取得する.部材の材質には、 プラント支持鉄骨において広く用いられる一般構造用圧延 鋼材(SS400)を採用した.断面形状としては、柱は角型 鋼管(\Box 100×100×6)、梁はH形鋼(H50×50× 3.2×4.5)を使用し、柱と梁の接合部は、実際の鉄骨構造 物の接合部を模擬した溶接条件とした.本試験では同種の 3体の試験体に対し、振動台試験を実施した.

3.2 試験条件

振動台試験においては, 錘の応答加速度, 応答変位を計 測した.また, 梁の柱・梁接合部付近にはひずみゲージを 貼り付け, 接合部に生じるひずみを計測した.

第5図に振動台試験で用いた加振波を示す.加振波と しては、図に示す単一振動数の正弦波 100 サイクル分を 用い、試験体に目立った破断が生じるまで同波形を繰り返 し入力した.正弦波の振動数は試験体の共振振動数と一致 させ、共振により試験体に大きな変形が生じるようにし た.生じる変形の目標は、巨大地震を受ける鉄骨構造物の 変形量の目安である層間変形角(地震時に生じる上下階 の水平変位差を、階高さで割ったもの)が 1/100 ~ 1/75 とし、試験体に生じる変形がこの変形量程度になるように した.

試験体の共振振動数は、振動試験に先立ち実施した振動 特性把握試験により同定した.この結果、共振振動数は約 2.5 Hz, 減衰比は約 0.003 と同定された.

3.3 試験結果

振動台試験の結果,3体の試験体全てにおいて,南側の 梁フランジ端部の溶接止端部付近で,き裂が発生した.試 験後の試験体の状態と生じたき裂を**第6図**に示す.いず れの試験体においても,累積で100~200サイクル程度 の繰り返し変形が発生した時点で,図に示す南側のフラン ジ下側領域におけるき裂の発生が確認された.加振を継続

第6図 試験後の試験体の状態と生じたき裂 Fig. 6 Final state of specimen and fractures generated during shaking table test

するとともに、き裂は梁材軸方向と直交方向に進展した. ウェブ位置を通過後、き裂進展速度は加速し、最終的には フランジ全体が完全に破断(**第6図-(b)**,-(c))した. また同時にウェブにもき裂が進展した.フランジが全面破 断した直後、図に示すように、梁全体の変形が進み、梁は 柱・梁接合部付近で大きく(約4°)折れ曲がった状態 (**第6図-(a)**)となった.またこの状態で加振を続けた が、フランジ破断前の20~30%程度の変形しか発生せ ず、ウェブ上のき裂はそれ以降進展しなかった.これは、 梁フランジ破断によって柱・梁接合部における剛性および 試験体の共振振動数が大幅に低下したため、正弦波加振に よる共振が維持できなくなったためと考えられる.この結 果より、反対側のフランジが残っているにもかかわらず、 事実上鉄骨部材としての機能が失われた.

このような柱・梁接合部付近での梁端部の破断は,兵庫 県南部地震などの過去の大地震でも多数観測されており, 鉄骨構造物の部材破断を考慮する上で,最も重要な破壊形 態の一つである.

3.4 破断面観察による破壊形態の確認

試験で発生した破壊形態を確認するため、走査型電子顕 微鏡(SEM)を用いた破断面観察を実施した.

破断面観察では、代表として破壊起点となった南側フラ ンジ下側領域と、き裂進展が急激に加速したウェブ中心部 に着目した.第7図に破断面の観察結果を示す.

破壊起点付近の破断面は比較的平たんであり、目立った ディンプルパターンなどは確認されず、破壊起点付近の破 壊形態は疲労破壊と考えられる. 一方でウェブ中心部では 明確なディンプルパターン(第7図-(c)の黒点)が多 数確認され、延性的に破壊が進行したと考えられる、また パターンの形状から, 最終的には 1 mm /サイクル近く の速度で進展していたと推測される.よって本試験では、 最初にフランジ端部に疲労き裂が発生し、そこからき裂が 延性的に進展し、最終的にフランジ全面破断に至ったと考 察した.

3.5 部材破断と判定するタイミング

第1図に示した数値解析手法フローにおいては、ある 条件を満たすと破断したと見なし、その瞬間から剛性を 0 にする処理を行う、そのため、部材として破断した状態を 定義する必要がある、試験結果より、定義の候補としては 2種類が考えられる. すなわち、① 最初に(疲労)き裂 が発生した状態。と②フランジが全面破断に至った状 態、である、本稿では①を採用し、この状態に至る瞬間 を破断と判定する基準として数値解析に組み込む. ① を

(注) *1:倍率 3000 倍

5 µm

第7図 破断面の SEM 観察結果 Fig. 7 Result of observation with SEM

採用した理由は、安全側に評価できること、いったんき裂 が生じるとそれ以降は、き裂が進展し、剛性が低下してい くため、構造部材としての機能が失われ始める瞬間に対応 することが挙げられる.

4. 数値解析による振動台試験結果の分析

破壊起点付近のひずみ分布をより詳細に分析するため, FEM を用いた本振動台試験の再現解析を実施した. 解析 ソルバーには、Abaqus/Standard を使用した.

4.1 解析モデル

振動台試験の再現解析モデルを第8図に示す. 試験体 のうち、錘、梁全体および柱の接合部付近の領域をモデル 化した. 柱・梁接合部付近は、ひずみ分布を詳細に算出す るためシェル要素を用い、梁のそれ以外の部分については 要素数削減のため、梁要素によりモデル化した.

材料特性は鉄鋼材料の降伏を考慮した弾塑性モデルと し、試験体から採取した試験片の材料試験により各種パラ メータを決定した.解析で用いた材料パラメータを第1 表に、解析で用いた材料特性の応力-ひずみ関係を第9 図に示す.

作成した解析モデルに対し、振動台試験において振動台 上にて観測された加速度波形を入力とする時刻歴応答解析 を実施した、試験と解析で算出された錘の応答変位と、試

Fig. 8 Analysis model of steel-frame structure

第1表 解析で用いた材料パラメータ **Table 1** Material parameters in analysis

		·· · · · ·	
項	目	単 位	パラメータ
ヤンク	~率	MPa	2.013×10^5
ポアソン比		_	0.3
降伏応	いた	MPa	336.0
二次勾問	記比	-	0.013 40
硬 化	目	_	移動硬化則

験と解析での錘の応答変位の比較を第10図に示す。両者 は精度良く一致しており、作成した解析モデルは、試験結 果を再現するモデルとして妥当であると判断できる。

4.2 破壊起点部の低サイクル疲労評価

作成した解析モデルを用い,破壊起点となった溶接止端 部に生じたひずみ履歴を算出する.解析におけるひずみ算 出箇所を第11図に示す.図のように,解析モデルにおい て,試験体に貼り付けたひずみゲージ位置(遠方および 近傍)(第11図-(b)),破壊起点部に対応する要素に おいて算出されたひずみ履歴を第12図に示す.ひずみ ゲージ位置でのひずみ履歴と比較し,破壊起点部では応力 集中により,大きなひずみが生じていることが分かる.ま

第 10 図 試験と解析での錘の応答変位の比較Fig. 10 Comparison of response displacements of weight in test and analysis

(a) ひずみゲージ位置および破壊起点位置

(b) 解析のモデル化

第12図 解析で算出された各箇所のひずみ履歴 Fig. 12 Response strain waves in analysis

た破断面の観察結果(第7図)より,破壊起点部において生じた破壊形態は疲労破壊であると推測されることから,低サイクル疲労評価が可能であると考えられる.

そこで第12図におけるひずみ振幅と,試験でき裂が発 生するまでのサイクル数をカウントし,鉄鋼材料の低サイ クル疲労寿命曲線と比較した結果を第13図に示す.ここ で低サイクル疲労寿命曲線としては,(1)式に示す

第13図 各試験体の低サイクル疲労寿命曲線との比較結果 Fig. 13 Result of low cycle fatigue evaluation for each specimen

Manson-Coffin 式⁽⁶⁾を用いる.ここで, ε_t はひずみ範囲 (**第 12 図**のひずみ波形 1 サイクルにおける両振幅値), N_t はき裂発生に至るまでのサイクル数である.

なお,地震波は一般にランダム波形であるため,地震時 に鉄骨部材に生じるひずみ履歴もランダム波形となる.ラ ンダム荷重を受ける鉄鋼材料の疲労寿命は,レインフロー 法⁽⁷⁾のようなサイクルカウント法によりひずみ波形を分 解し,線形累積損傷則を仮定することで推定可能である. そこでこれらの処理アルゴリズムも併せて解析手法に組み 込んだ.

5. 破壊を考慮した耐震性能評価手法の適用例

本章では、構築した部材破断を考慮した数値解析手法を 実際に鉄骨構造物の耐震性能評価に適用した例について述 べる. 解析ソルバーには Abaqus/Standard を用い、構築 した部材破断アルゴリズムをユーザサブルーチンとして組 み込んだ.

① 鉄骨部材の破断挙動を考慮した場合,② 従来手法どおり破断挙動を考慮せず,弾塑性挙動のみを考慮した場合,についての双方の結果を比較し,地震中の部材破断が鉄骨構造物の耐震性能に与える影響を示す.

5.1 解析モデルおよび解析条件

解析対象は、柱および梁で構成された1スパンの5階

建て鉄骨構造物とする. 第 14 図に鉄骨構造物の解析モデ ルを示す. 単純化するため,解析モデルは図のような二次 元平面モデルとし,誌面と平行な面内のみの変形を考慮す るものとする.柱,梁を梁要素でモデル化し,床や機器な どの積載質量を模擬するため,柱・梁交点に質量要素 (質量値は全て同一で3t)を配置した.柱の断面形状は 左側が□850×850×32,右側は□700×700×25とし, 左右で異なる断面形状とした.梁にはH800×250×14× 22を用いた.本構造物は,梁より柱の耐力を高めた梁降 伏型骨組であり,地震時には主に梁の損傷が先行する.ま た現象を単純化するため,左右の柱の断面形状を異なるも のとした.これにより,梁両端の曲げモーメントの大きさ に偏りが生じ(本適用例は柱強度が大きい左側の方が大 きくなる),各層の梁において,左側端部でのみ破断が生 じるようにした.

鉄骨部材の破壊形態としては,前章まで対象とした柱・ 梁接合部付近での梁端部の破断とし,第14図に赤で示し た梁要素において破断を考慮する.破断判定に用いる疲労 寿命式は(1)式とした.

時刻歴応答解析に先立ち,固有値解析を実施した結果, 一次固有周期は約 0.92 s であった.一次固有モード形状 を**第 15 図**に示す.また,固有モードの有効質量比は約 87%であり,解析モデルの動的挙動は,ほぼ本モードの みに支配される.そのため減衰は剛性比例型で与えること とし,参考文献(8)に従い減衰比は 0.030 とした.

時刻歴応答解析に用いる地震波は, 第16図に示す人工 的に合成された模擬地震動を用いる.模擬地震動は, その

第14図 鉄骨構造物の解析モデル(単位:mm) Fig. 14 Analysis model of steel-frame structure (unit:mm)

加速度応答スペクトルが解析モデルの一次固有周期 0.92 s 前後で一定の強さを有するように合成した.これにより, 梁の降伏や破断が生じて骨組がある程度長周期化しても, 地震波による揺れが継続されることを狙いとした.なお, 本地震波は兵庫県南部地震において,神戸海洋気象台 (現神戸地方気象台)にて観測された地震波(震度 6)と ほぼ同等のレベルである.

また,2016年に発生した熊本地震のように,震度7級の激震が複数回作用するケースを想定し,本地震動を続けて2度入力することとした.

5.2 解析結果

本節では,時刻歴応答解析の結果について述べる.まずは,部材破断を考慮した場合の解析結果について解説す

る. **第 17 図**に,破断を考慮した解析ケースにおいて,破 断と判定された箇所を示す.図に示すように,第1~3 層の左側の梁端部にて,下層から順番に破断が発生する結 果となった.

地震時,各層にはそれより上部の層の質量に比例した慣 性力が作用する.このため,各層に作用する地震力は下層 にいくほど大きくなる.これらの理由から,一般的に地震 時の損傷は下層部から生じるのが一般的であり,本解析結 果もこの傾向を示している.

鉄骨構造物に地震力が水平方向に作用した場合,その荷 重は主に柱,梁の曲げモーメントとして負担される. 第 18 図に,梁端部の破断が発生した第 1 層と,破断が発生 しなかった第 4 層における,柱・梁の曲げモーメントの 時刻歴波形を示す. 第 18 図 - (a)に示すとおり,梁端部 に破断が発生(時刻:160.9 s)することで,梁の曲げ モーメント負担が解放され,それ以降はいかなる曲げモー メントも負担しておらず,部材破断による剛性喪失が表現 されていることが分かる.また,第 4 層の梁が負担する 曲げモーメント(第 18 図 - (b))は,梁破断以降急激に 大きくなっている.これは,第 1 ~ 3 層の梁の破断によ り,それらが破断までに負担していた曲げモーメントを第 4 層の梁が負担したことが理由である.このように,部材 破断による構造物内の荷重分布図の変化も表現できている.

次に,梁端部の部材破断を考慮した場合と,考慮しない 場合を比較した結果について述べる. 第19図に,梁端部 の破断を考慮する場合としない場合における,第1~ 3層の変位(上下層の相対変位)を示す.

破断を考慮しない場合と比較し,破断が発生するに従っ て,層全体の変形は増大し,また振動周期が長くなってい

第17図 破断と判定された箇所 Fig. 17 Locations of members judged to have fractured

(a) 第1層

第 18 図 第 1. 4 層における柱・梁の曲げモーメントの時刻歴波形 Fig. 18 Response bending moments of beams and columns in layer 1 and 4

ることが分かる.これは梁の破断により構造物全体の剛性 が低下したことによる長周期化が原因である.

一般的に地震波形では、短周期成分は早期に収束するの に対し、長周期成分は比較的長く継続し、構造物の地震の 後揺れに影響する.東北地方太平洋沖地震においても、長 周期成分による構造物の後揺れの継続が問題となってい る.このため本ケースのように、地震中の部材破断によ り、構造物が著しく長周期化する場合、その影響を受けて 後揺れが増大し、結果として構造物に作用する荷重サイク ルが増大する可能性がある.そのため、特に高レベルの長 周期地震動を対象とする場合、部材破断を含めた地震中の 部材破断による剛性変化を精度良く把握することが重要で ある.

本稿の冒頭で述べたとおり,限界状態設計法では,巨大 地震時における鉄骨部材の一定量の塑性変形を許容してい る.鉄骨部材は塑性変形を生じることで,地震時に生じる 運動エネルギー(地震エネルギー)を吸収し,地震応答 を低減することが期待される.また,吸収されたエネル ギーは塑性変形として鉄骨部材に蓄積されるため,吸収エ ネルギー量は地震後の損傷度合いに対応する.そのため, 鉄骨構造物を構成する各構造部材が吸収する地震エネル ギー量を精度良く推定することは、巨大地震に対する耐震 性能を評価する上で重要である.

本構造物は柱に対して梁の損傷を先行させるため,地震 エネルギーは主に梁材によって吸収されると考察した.そ こで破断を考慮した場合と,考慮しない場合の双方におい て,各層の梁が地震中に吸収した地震エネルギーの時間推 移を**第 20 図**に示す.図において,エネルギー量が大きく 増大する時間帯が 2 回(5~60 s ごろ,140~200 s ご ろ)存在し,これらは 2 度入力された地震動の主要動部 分に対応する.

破断を考慮しない場合(第20図の破線部分),吸収エネルギーは各層とも単調に増加する.これは,解析が終了するまで各層の梁が破断することなく塑性変形し続けることで,エネルギーを吸収し続けるためである.一方で破断を考慮した場合(第20図の実線部分),各層で梁の破断が発生すると,それ以降は荷重を負担しないため,その層のエネルギー吸収が停止する.

破断を考慮した場合,最終的には第1,2層の吸収エネ ルギー量は破断を考慮しない場合よりも小さくなり,一方 で第3,4層の吸収エネルギー量は増大する.これは下層部 の梁が早期に破断することで,それ以降,これらの梁が吸

第 19 図第 1 ~ 3 層の層変位 **Fig. 19** Time history of deformation of layer 1 to 3

収するはずであった地震エネルギーが上層部に再分配され たことが原因である.前述のとおり,最終的な地震エネル ギー吸収量の分布は,構造物全体の損傷度合いの分布に直 結するため,部材の破断を考慮するかどうかで,各部材の 損傷分布が大きく異なる.このように,地震後の損傷分布 という観点からも,部材破断が及ぼす影響は大きく,部材 破断の発生が疑われる巨大地震に対しては,その破断によ る影響を精度良く耐震性能評価に取り込むことが重要であ る.

6. 結 言

南海トラフ地震などの巨大地震を想定した,鉄骨部材の 破断を考慮できる数値解析手法を構築した.また本手法を 用いた時刻歴応答解析を実施することで,鉄骨部材の破断 が構造物全体の耐震性能に与える影響について検討した. 本稿の結論を以下に示す.

(1) 地震中に部材が破断し剛性を失う挙動を, FEM を用いた数値解析手法に組み込んだ. 破断と判定す

第20図各層の梁の吸収エネルギーの時間推移 Fig. 20 Time transition for absorbed plastic energy by each layer's beams

る条件はユーザが任意に設定可能であり,実現象に 対応した条件則を定義することで,さまざまな破壊 形態を評価対象として取り込むことができる.

- (2) 部材破断判定則の決定のため、鉄骨部材の破断に 至るまでの挙動の取得を目的とした振動台試験を実施した.試験によって確認された破壊形態は、低サイクル疲労を原因とするものと推定され、低サイクル疲労評価手法を解析手法に組み込むことで、精度の良い部材破断を考慮した解析手法を実現した.
- (3) 構築した耐震性能評価手法を鉄骨構造物の解析モデルに適用することで、部材破断が構造物の耐震性能に与える影響について検討した.破断を考慮することで、構造物全体の変形や地震エネルギー吸収量が大きく変化することが明らかとなった.そのため、部材破断の発生が疑われる巨大地震に対しては、その影響を精度良く考慮することが重要である.
- (4) 本研究の成果を当社グループ製品の耐震性能評価 に適用することで、巨大地震を受ける構造物の部材 破断を含めた極限状態での挙動や、構造物が有する 真の耐力を明らかにできる.これにより、構造物の 耐震性能を最大限に引き出し、耐震性能を有した上 で経済的かつ合理的な構造の実現が可能になると考

えられる.

今後の課題と展望を以下に記す.

- 3章で述べたような部材要素単位の試験だけでなく、 骨組レベルでの震動破壊試験を通じ、構築した数値 解析手法が、部材破断を含めた構造物全体の地震応 答を精度良く再現できるかどうかの検証が必要であ る。
- ・ 今後は、火力プラント支持鉄骨、運搬荷役設備など、 実際の当社グループ製品の耐震性能評価に適用し、
 巨大地震時に部材破断のような大きな損傷を許容することで、各設備が有する耐力がどの程度変化するのか検証したい。

参考文献

- (1) 一般社団法人日本建築学会:鋼構造限界状態設計 指針・同解説,2010年2月
- (2)本田利器,秋山充良,片岡正次郎,高橋良和,野津厚,室野剛隆:「危機耐性」を考慮した耐震設計体系 試案構築にむけての考察 -,土木学会論文集 A1(構造・地震工学), Vol. 72, No. 4(地震工学論文集第35巻),2016年, pp. I_459 472
- (3) N. Kasahara, T. Sato and A. Blahoianu :

Contribution to Safety Enhancement for BDBE in Structure and Material Fields, ASME 2018 Pressure Vessels and Piping Conference, (2018.7)

- (4) K. Shiomi : Seismic Performance Evaluation for Steel-Frame-Structure Considering Member Fracture, ASME 2017 Pressure Vessels and Piping Conference, (2017.7)
- (5) K. Shiomi and Y. Wada : The Fracture Limit of Steel-Frame Members under Dynamic Repeated Loads through The Shaking Table Test, ASME 2018 Pressure Vessels and Piping Conference, (2018.7)
- (6) 佐伯英一郎, 杉沢 充,山口種美,望月晴雄,和田 章:低降伏点鋼の低サイクル疲労特性に関する研究,日本建築学会構造系論文集, Vol. 60, No. 472, 1995年6月, pp. 139 147
- (7) 遠藤達雄,安在弘幸:簡明にされたレインフローアルゴリズム「P/V 差法」について,材料, Vol. 30, No. 328, 1981 年 1 月, pp. 89 93
- (8) 高圧ガス保安協会:高圧ガス設備等耐震設計指
 針、レベル1耐震性能評価(耐震設計設備・基礎)
 編、2012年