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1.　緒　　　　言

IHI グループの製品の多くは，複数の子部品から構成さ
れている．昨今，製品に対する要求が高度化する中で，各
子部品が個別の要求を満たしていても，それらの組合せに
よる微妙な相性により，組立後の製品が要求を満たせない
場合がある．一方，子部品の加工精度には限界があり，形
状や特性に関する一定の製造ばらつきは許容せざるを得な
い．こうした背景から，低コストで機能要求を満たす製品
を安定して生産する技術が希求されている．
近年，こうした問題に対し，選択組立 ( selective assembly ) 

と呼ばれる，ロット内の子部品ばらつきを考慮して，組立
後の製品の品質を向上させる手法が広く検討されている．
例えば山田 ( 1 ) は，ロット内の子部品の特性情報を参照
し，それらの差のばらつきを低減しながら残留部品の発生
を低減する選択組立法を提案している．しかしながら，先
行研究の多くは寸法差など，子部品の特性のばらつきにの
み注目しており，それらが組立後の製品の品質判定にどの
ように関わるかについては直接扱うことができない．
そこで本研究では，ロット内の子部品同士を組み合わせ
る際に，過去の製造データから学習した不合格確率モデル
を用いて，実際の合否判定に直結するリスクを定量化し，
ハンガリアン法 ( 2 ) による最適割当問題のコストとして組
み込むことを提案する．具体的には，子部品 Aと B の組
合せ特徴量から不合格確率を推定し，それをコスト行列に

反映することで，合格品数を最大化するマッチングを効率
良く探索できるように設計する．また，ベイズ最適化 ( 3 )

で用いられる不確実性の考慮を応用し，モデル誤差や未知
のばらつき要因にも柔軟に対応できるコスト関数を設定す
る．本手法により，従来の寸法差に基づく最適化だけでは
捉えきれない品質判定の視点を組合せ戦略に導入し，多様
化する製造工程における不合格リスクを低減することを目
的とする．

2.　問  題  設  定

本稿では，二つの異なる子部品 A と B を組み合わせ
て製品を生産する際の最適なマッチングアルゴリズムを検
討する．
具体的にはロット内に子部品 A が n 個，子部品 B が

m 個存在し，それぞれに特徴量ベクトル ai ( i = 1, ..., n )，
bj ( j = 1, ..., m ) が与えられている状況を考える．これらの
特徴量は，各子部品の品質や特性を数値化したものである．
目標は，これらの特徴量を用いて子部品の組合せを最適
化し，ロットから生産される製品の合格品数を最大化す
る，すなわち，不合格品数を最小化することである．第 1

図に本研究における問題設定を示す．
具体的には，以下の数式で表されるロット内の不合格品
数の期待値を最小化することを目指す．
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ここで，di, j は子部品 Ai と子部品 Bj を組み合わせる場
合に 1 となり，それ以外は 0 となるバイナリ変数であ
り，Pi, j は子部品 Ai と子部品 Bj の組合せにおける未知の
不合格確率を表す．
問題設定においては，以下の制約条件を考慮する．
・ 各子部品は一度だけ使用される
・ 合計で min (n, m) 個の製品が生産される
この条件の下で，最適な組合せを見つけることを目的と
する．3 章では，この問題を解決する具体的な手法を提案
する．

3.　提  案  手  法

ロット内の子部品の組合せを最適化するための手法を説
明する．

3. 1　マッチング最適化

2 章で述べた問題は，最適割当問題として定式化でき
る．特に，コスト行列 C を用いた最適割当問題では，ハ
ンガリアン法により最適なマッチングを効率的に探索でき
ることが知られている．与えられた k × k の子部品の組合
せに対して，適切なコスト行列 C が用意されている場合，
ハンガリアン法を適用することで，行と列の間での最小コ
ストのマッチングを O(k 3) で探索できる．ここで，コス
ト行列 C の各要素 Ci, j は，子部品 Ai と子部品 Bj の組合
せにおける不合格確率 Pi, j を反映した値である．
ハンガリアン法は通常，正方行列に対して適用される
が，ロット内の子部品の数が異なる場合 ( n ≠ m ) でも，
少数の子部品について，どの相手とも十分大きく等しいコ
ストを持つダミーの子部品を追加することで適用が可能と
なることが知られている．

3. 2　分類モデルの構築とコストの設定

子部品のマッチング最適化にハンガリアン法を適用する
には，ロット内のすべての組合せに対して適切なコスト
Ci, j を設定する必要がある．製品の合格確率を考慮した最
適な組合せを検討する際，最も単純なコストとして，過去
の子部品の組合せとその合否結果に基づいて 2 値分類モ
デルを構築し，各組合せに対する予測確率を用いることが
考えられる．具体的には，子部品 Ai の特徴量ベクトル ai

と子部品 Bj の特徴量ベクトル bj および適当な関数 h を
用いて，組合せに対応する特徴量ベクトル xi, j = h(ai, bj)

を生成し，分類モデルによる組合せの不合格確率の予測値 

P̂ ,i j をコスト Ci, j として用いる方法である．ここで，組合
せ特徴量は，単にベクトルを連結したものや，特定の関数
を適用したものが利用可能である．
また，予測の不確実性も考慮したコストを設定すること
で，不合格確率が大きく変動するような組合せを回避し，
歩留まりの向上だけでなく，製造プロセス全体の信頼性の
向上への寄与も期待できる．さらに，予測モデルの精度が
完全でない場合，例えば，データ不足や未知の要因の影響
がある場合には，不確実性を適切に評価することで，モデ
ルの限界に起因する問題を緩和できる可能性がある．こう
した観点から，本研究では予測の不確実性を考慮するため
に，組合せに対する複数のコスト Ci, j を考え，比較，考
察を行う．
・ 期待値コスト：

, ,( )C f xi j i j= 



     

 .................................  ( 2 )

・ UCB ( Upper Confidence Bound ) コスト：
( ){ }, ,( )C f x f xi j i j i j,= 



 + ×k std       ........  ( 3 )

・ EI ( Expected Improvement ) コスト ：
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( a )　ランダムな組立 ( b )　ロット内の最適な組立

第 1 図　本研究における問題設定
Fig. 1　Problem setting in this study
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・ PI ( Probability of Improvement ) コスト ：

, ,C P ( )r f x yi j i j
base= ≥



     

 .......................  ( 5 )

ここで，f は予測の不確実性を考慮できる 2 値分類モデ
ルであり，本研究ではガウス過程分類器 ( Gaussian Process 

Classification：GPC ) を利用する．UCB，EI，PIコストは，
ベイズ最適化における同名の獲得関数に着想を得たもので
ある．ただし，本研究で用いる GPC では，潜在関数に対
してプロビット関数をリンク関数として適用することで不
合格確率を求めているため，UCB コストは確率空間での
事後平均と標準偏差を用いて定義している．UCB におけ
る k は，平均に対する標準偏差の重み付け係数であり，
探索と活用のバランスを調整するパラメータである．この
値を大きくすると不確実性を重視して探索的な選択を促
し，小さくすると平均値を重視した選択となる．また，EI

コスト，PI コストにおける y base は，ベイズ最適化の EI，
PI で用いられる暫定の最適値とは異なり，基準となる不
合格確率を表し，過去の実績などから設定する．なお，
UCB や EI コストの計算には，モンテカルロサンプリン
グによる近似計算を用いる．

3. 3　提案手法の全体像

本研究における提案手法の全体像を第 2 図に示す．図
に示すとおり，まず子部品 Ai と Bj の特徴量 ai と bj か
ら組合せ特徴量 xi, j を生成し，予測モデル f によって
3. 2 節で説明したコストを算出する．次に，得られたコス
トをコスト行列として整理し，ハンガリアン法により全体
の組合せを最適化する．

4.　実  験  設  定

提案手法の有効性を検証するため，合成データを用いて
実験を行う．

4. 1　シミュレータの設計

実験においては，子部品の組合せに対する不合格確率を
評価するため，特定のシミュレータを設計する．第 3 図

にシミュレータのイメージを示す．具体的には，以下の設
定を用いる．

( 1 ) 子部品の生成
子部品 A および B に対して，それぞれ 5 か所の
座標点を生成する．各座標点は二次元 (x, y) で表さ
れ，x 座標は固定値とし，y 座標のみランダムに決定
する．これらの座標情報を，子部品 A の特徴量ベク
トル ai，子部品 B の特徴量ベクトル bj とする．

( 2 ) 不合格確率の計算
子部品 A と B の寸法間に形成される面積を「隙
間面積」と定義し（第 3 図），この面積に基づいて
不合格確率を設定する．具体的には，シグモイド関
数を用いて，隙間面積が大きいほど不合格確率が高
くなるようにモデル化する．

4. 2　実験方法

本実験では，提案手法の有効性を評価するため，以下の
方法で実験を行う．
・ 学習データの生成：
シミュレータを用いて子部品 A，B を N 対生成

子部品
Ai

子部品
Bj

組合せ特徴量
xi, j

予測モデル f 

ハンガリアン法子部品 Ai

子部品 Bj

Ci, j

最適な組合せコスト行列

第 2 図　提案手法の全体像
Fig. 2　Overview of the proposed method
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第 3 図　シミュレータのイメージ図
Fig. 3　Illustration of the simulator
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し，それらをランダムに組み合わせた製品に対して
計算される不合格確率に基づき合否のラベルを与え
る．
・ 分類モデルの構築：
生成した学習データに対して GPC を適用する．
ただし，今回は組合せ特徴量として，子部品寸法を
単純に結合した特徴量を利用し，xi, j = {ai, bj} とす
る．
・ テストデータに対する適用：
テストデータとして n 対の子部品を用意し，それ
らの n × n の組合せに対して 3. 2 節の各コストを計
算し，ハンガリアン法による最適化を実施する．た
だし，UCB コストでは k = 1，EI コスト，PI コス
トでは y base = 0.5 とする．さらに，ランダムな組合
せとの比較を行い，提案手法の有効性を評価する．
評価は，シミュレータによって計算される真の不合
格確率を用いて ( 1 ) 式により行う．

5.　実  験  結  果

第 4 図に単一ロットに対する提案手法の評価を示す．
これは，提案手法を含む各手法により，20 対の子部品を
含む 1 ロットに対して組合せを行い評価したものである．
ここでは学習データ数を 100 件とした．各手法が選択し
た組合せに基づく ( 1 ) 式の評価指標を「 Total Cost」とし
てそれぞれ表示しており，これは 20 個の製品のうち不合
格となる数の期待値を表す．また，各マトリックスのセ
ルは組合せに対する真の不合格確率をカラースケールで
示しており，青は値が 0.0 に近いことを，赤は値が 1.0

に近いことを表す．「 True Cost Matching」として示され
る結果（第 4 図 - ( a )）は，真の不合格確率が既知であ
ると仮定し，ハンガリアン法を用いて得られた理想的な
マッチングの結果 ( 3.72/20 ) を表している．一方，第 4

図 - ( b ) の「 Random Matching」はランダムに組合せを
選択した場合の結果であり，他手法と比較して高い値 

( 7.59/20 ) を示していることから，無作為な選択が効率的

（ 注 ）
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第 4 図　単一ロットに対する提案手法の評価
Fig. 4　Evaluation of the proposed method for a single lot
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でないことが明らかである．期待値，UCB，EI，PI と
いったコストを用いたマッチングを比較すると，PI が最も
理想に近い結果 ( 6.04/20 ) となった．
さらにロット数を増やした際の結果を第 5 図に示す．
図は学習データの数を 50，100，200 とした際の結果であ
り，提案手法における各コストを用いた組合せがランダム
な組合せと比較して平均的にどれだけ不合格品数を減らせ
るかを評価したものである．どのコストによる組合せも約
半分が不合格となるランダムな組合せ（青線）よりも効
果があり，また，学習データが増加すると最適な組合せ
（破線）に近づく傾向が確認できるが，今回の設定では

PI が最も理想に近い結果となった．

6.　考　　　　察

ベイズ最適化では，次に評価する点を選ぶために，探索
と活用のバランスを考慮した獲得関数を用いる．このう
ち，UCB や EI は，未知領域の情報を積極的に取得して
最終的な精度向上を図る探索の要素が比較的強い．一方，
PI は，UCB や EI よりも活用に重点を置く性質があるた
め，本研究のように一度の学習で最適な組合せを求める静
的な問題設定には適していたことが考えられる．すなわ
ち，逐次的に学習して未知領域を探索する必要がないた
め，合格確率が一定のしきい値を超える組合せを優先選択
する PI が，UCB や EI よりも低リスクに多くの合格品
を得る戦略と合致した可能性がある．また，単に期待値の
みを用いるコストでは不確実性を加味しないため，学習

データが限られる場合では精度への不安が残るが，PI は
モデルの分散情報を組み込みつつ基準しきい値を上回る可
能性を高めることができるため，本研究でより良い成果を
示したと考えられる．

7.　結　　　　言

本研究では，ロット内の異なる子部品 A と B を組み
合わせて製品を生産する際に，より多くの合格品を得るた
めの最適な組合せを探索するためのアルゴリズムを提案し
た．提案手法は，過去の製造データから子部品の組合せに
基づいて製品の不合格確率を予測するモデルを構築し，そ
の予測を基に最適な組合せを探索する．特に，ベイズ最適
化における獲得関数に着想を得た予測の不確実性を考慮し
たコストを設計し，ハンガリアン法による組合せ最適化に
応用した．
シミュレーションによる実験結果から，提案手法はラン
ダムな組合せと比較して，ロット内の不合格品数を大幅に
減少させることが確認できた．特に，PI コストを用いた
マッチング戦略が最も優れた成果を示し，実際の製造プロ
セスにおいても有用である可能性が示唆された．
また，今回は過去データからロット内の組合せを最適化
する静的な問題設定であったが，ベイズ最適化のように逐
次的に学習を行うことで，リアルタイムでの最適化精度の
向上が期待される．そのようなアルゴリズムの検証は今後
の課題である．また，実務的には学習したモデルから製造
プロセスへのフィードバックを行う方法の開発も重要であ
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第 5 図　複数ロットに対する提案手法の評価
Fig. 5　Evaluation of the proposed method for multiple lots
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る．具体的には，モデルの予測結果や学習結果をどのよう
に製造現場に還元し，製品品質や生産効率の向上に役立て
るかを検討する必要がある．さらに，より複雑な製造プロ
セスに対応するため，提案手法を三つ以上の子部品のマッ
チングへ拡張することも検討していきたい．
本研究の成果は，製造業の効率化と信頼性向上に貢献す
るものであり，今後さらなる研究と応用を進めていく予定
である．
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