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Prediction of Material Behavior of Ceramic Matrix Composites under Static Tension Loading

F O R H BRI vy — MR RSN e (T22)

fzetk o MmBE ) B2, SR - mEREL 7 Iy 7 AEEEHE (CMC) O 2 Y VEm AN OBH P LETH D,
PR DI b & & b ICHE R O BT, BEEA I = X LAOM@AEETHSH. KL TIE, —JH CMC
DMHMETT TN BT 2 5 IR EROEGE TV 2MEL, —H CMC OMEZEBZEERCFHTL22 L2 H
e L7z, BEEEL72~ MY v 7 ASREEET VB L UOHMBEE T VEHWS 2 LT, BRTHLNIN -0
TR, BLOSREE -SHBERTZEVBETTFIT 2 2 LR 2 o7z,

Improving aircraft fuel efficiency requires the application of high-temperature and high-strength ceramic matrix composites
(CMCs) to engine components, necessitating enhanced material properties, highly accurate structural strength predictions, and
a thorough understanding of fracture mechanisms. In this study, damage models under static tensile loading in the fiber direction
of unidirectional CMCs were constructed to enable precise prediction of the material behavior of unidirectional CMCs. By
employing both a matrix crack growth and a fiber breakage model, it is possible to accurately predict the stress-strain relationship
and the crack density-stress relationship obtained in experiments.
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Fig. 1 Schematic of damages in unidirectional CMCs
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Fig. 2 New matrix crack initiation between pre-existing matrix cracks
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Fig. 5 Stress-strain curves obtained by calculation and experiment
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Fig. 10 Matrix crack and fiber breakage in GLS model
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Table 4 Parameters of unidirectional SiC/CAS composites on matrix
cracks and fiber breakage
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