船舶用ハイブリッド式減揺装置の開発と実海域試験

小池 裕二
技術本部技術研究所機械構造開発部
研究員

谷田 宏次
技術本部技術研究所機械構造開発部
担当課長 工学博士

幸田口 勝生
機械構造事業本部機械構造事業開発部
専門課長

村田 保
機械構造事業本部機械構造事業開発部

今関 正典
機械構造事業本部機械構造事業開発部

広重 栄基
船舶海洋事業本部艦船技術部

Development of Hybrid Anti-Rolling System for Ships and Sea Experiments

Yuji Koike, Koji Tanida, Masao Mutaguchi
Tamotsu Murata, Masanori Imaekei, Elki Hiroshige

An actively controlled anti-rolling system has been developed to reduce the rolling motion of a ship by the movement of a mass controlled by an actuator. The hybrid type system combines the pendulum-base passive type using a moving mass on an arc-shaped rail, with the active type driven by a relatively small electric motor. Sea experiments were performed with a ship (weight approx. 190 tons) to verify the damping effects of the hybrid anti-rolling system. Rolling was reduced to about 1/3 in beam seas when the ship was stationary.

1. 緒 言

観測船、調査船などの船舶では、海上での観測作業のため停船時および、低速航走時の横揺れ低減が重要な要求性能となる。従来、船舶の横揺れを低減するためにの装置としては、第1表に示すアンチローリングタンク（ART）やフィンスタビライザが一般に用いられているが、フィンスタビライザは、通常、航走時の横揺れを目的としており、作動時には流体抵抗が流速低下の要因となる。また、ARTは、普通、上甲板より上部に設けられることが多いため、船の後方への見通しが悪くなることや、一度設計するとタンクの固定周期が固定されてしまうため、船体の固定周期が変化した場合には減揺効果が著しく低減するなどの問題点がある。このような観点から、筆者らは、これまでにセンサで検出した船体の横揺れに基づき可動マスをアクチュエータ駆動することで減揺効果を得る能動型減揺装置を開発し、水槽による模型実験および小型船を用いた海上試験から良好な性能を確認している（1）。

そこで、可動マスを減揺装置に用いる方法としては、第1図に示すように減揺力を発生させる要素の違いによりパッシブ方式、アクティブ方式、ハイブリッド方式の3方式が考えられる。このうち、後者二方式は、いずれもアクチュエータ駆動の能動型であるが、ハイブリッド方式で

<table>
<thead>
<tr>
<th>車別</th>
<th>項目</th>
<th>構 造</th>
<th>長 所</th>
<th>短 所</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベルギキル</td>
<td>1. 停船中、航走中ともに有効</td>
<td>1. 減揺効果小</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 安定技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 機構が単純</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アンチローリングタンク</td>
<td>1. 停船中、航走中ともに有効</td>
<td>1. 船の動揺周期、波長周期の変化で減揺効果が低減</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 社構造が簡単</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 航走時の変量</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィンスタビライザ</td>
<td>1. 設計点での効果大</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 機構化による変数の影響</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 船体加加荷物のため、船体</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低減の変化</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Classification of anti-rolling system

Fig. 1 Dynamic model
は、ばね要素と減衰要素がアクチュエータと並列に負ており、パッシブ方式とアクティブ方式を組み合わせた構造となっている。そのため、アクティブ方式に比べ少ない制御力で同等の効果を発揮することができるほか、停電時や何らかの故障が生じた場合にもパッシブ方式として有効であるなどの長所をもっていることから、大型船を対象とした場合にはもっともとすれていると考えられる（2）、（3）。

そこで、本研究では、排水量約 190 t の調査監督船を対象に、あらたにハイブリッド方式の減揺装置を開発し、海上試験による性能確認を行なった。その結果、停電時の横揺れ、約 1/3 に低減できるだけの顕著な性能を発揮することができる確認されたので以下に報告する。

2. 制御系の設計

第 1 図の力学モデルで、船体の運動に以下の仮定を設ける。

(1) 横揺れを船体重心回りの回転とみなし、そのほかの自由度との連成は無視する。

(2) 船体に作用する減衰を粘性減衰とする。

このとき、ハイブリッド方式における船体と可動マスの運動方程式を線形化して表すと次式のようになる。

\[ I \ddot{\phi} + R \dot{\phi} + WGM\phi = T + m_d \dot{\phi} (\xi_d - \ell \phi) - f_d \ell \]  \hspace{1cm} (1)

\[ m_d \ddot{x}_d = m_d \dot{\phi} + f_d \]  \hspace{1cm} (2)

\[ f_d = f_c + c_d (\ell \phi - x_d) + k_d (\ell \phi - x_d) \]  \hspace{1cm} (3)

ここで、\( I \)：船体の重心回りの慣性モーメント
\( R \)：船体の減衰係数
\( W \)：船体の排水量
\( GM \)：メタセント高さ
\( \phi \)：船体横揺れ角
\( m_d \)：可動マスの質量
\( c_d \)：装置の減衰係数
\( k_d \)：装置のばね定数
\( x_d \)：可動マス変位
\( \xi \)：船体の重心から可動マス重心までの距離
\( f_c \)：アクチュエータによる制御力
\( f_d \)：船体に作用する水平外力
\( T \)：波強制モーメント
\( g \)：重力加速度

であり、パッシブ方式では、\( f_c = 0 \) とすればよい。

また、アクチュエータには電動モータを用いたので、その動特性を考慮する。

本装置では、変位制御により駆動し、制御入力 \( u \) に対する可動マスの位置変位 \( \xi = x_d - \ell \phi \) の周波数応答を実験的に同定し、以下の 2 次遅れ系で近似した。

\[ \ddot{\xi} + 2 \zeta \omega_n \dot{\xi} + \omega_n^2 \xi = \omega_n^2 u - \ell \dot{\phi} + g \phi \]  \hspace{1cm} (4)

ここで、\( \omega_n \) および \( \zeta \) は、それぞれ等価固有角振動数、等価減衰比を指す。制御系の設計には、LQ 継計理論を適用した。\( w = [\phi \dot{\phi} \dot{x}_d] \) と、\( c = [\ell \phi \dot{x}_d] \) と定義し、(1)～(4) 式を状態方程式の形で表すと次式となる。

\[ \dot{x} = Ax + bu + dv \]  \hspace{1cm} (5)

評価関数 \( J \) を次の 2 次形式で与える。

\[ J = \int_0^\infty (x^T Q x + r u^2) dt \]  \hspace{1cm} (6)

ここで、\( Q \)：重み行列
\( r \)：重み係数

これを最小にする制御入力を、次式に示す Riccati 方程式

\[ PA + A^T P + Q - P b b^T P/r = 0 \]  \hspace{1cm} (7)

の解によって

\[ u = -b^T P x/r = -k x \]  \hspace{1cm} (8)

で与えられる。

3. 試験装置

本研究に用いた供試船を、第 2 図に示す。本船は、排水量約 190 t の調査監督船で、チャクをもち、かつ浅水域での高速船の一種である。減揺装置は、船体上部構造物後部に設置した甲板上に設置した。第 3 図と第 4 図に減揺装置の構造および概観を示す。可動マスには、電動モータ、減速
船舶用ハイブリッド式減揺装置の開発と実海域試験

第3図 ハイブリッド式減揺装置の構造（単位：mm）
Fig. 3 Hybrid anti-rolling system–key components (unit: mm)

第4図 ハイブリッド式減揺装置の概観
Fig. 4 Hybrid anti-rolling system–general view

機が搭載されており、それ自体が、円弧レール上を歯車機
構を介して振動する。可動マスの質量は3.5tで排水量の約
1.8％に相当する。可動マスの軌道を円弧とするため、振
り子の原理に基づくパッシブ方式の要素を持たせており、
吊り機構、ばね機構を必要としないコンパクトな構造と
なっている。この機構に、電動モータ制御を加えることで
装置全体としてハイブリッド方式が実現されている。本装
置では、可動マスの固定周期は、船体の横揺れ固定周期
と一致させた。また、減衰は、装置単体での自由振動結果
より、等価粘性減衰が約30％であることを確認した。

第5図 制御系の構成を示す。船体には、角速度計が取
り付けられており、角速度および、これを積分した角変位
が得られる。一方、電動モータのパルスジェネレータから
可動マスの速度、変位が得られる。これらの4個の信号に
(8)式で求めたフィードバックゲインを与え、加算した信
号を制御入力とした。

海上で装置を作動させるのに先立ち、減揺効果の予測解
析を行った。第6図は、装置非作動時、ハイブリッド方
式、パッシブ方式の各場合の周波数応答で、それぞれ点
線、実線、一点鎖線で示している。ここで、図の横軸は
船体の横揺れ固有振動数に対する強制振動数比を、また縦
軸は、\(\phi/\phi_0\)（船体横揺れ角）および、\(x/(\phi_0)\)（可動マス変
位、ここで、\(\phi_0\)：静的角変位）で定義される振幅倍率を表
す。ハイブリッド方式では、装置非作動時の約1/3～1/4
に低減することを想定してフィードバックゲインを定め
た。また、パッシブ方式の場合には、いわゆる最適同調,
最適減衰は実現されていないが、非作動時の約1/2に低減
できることがわかる。

4. 実海域試験

4.1 試験方法

実際の波浪中の横揺れに対する減揺効果を確認するた
め、装置を一定時間作動または非作動状態にし、以下の要
領で実海域試験を行なった。

試験は、東京湾から相模湾の海域において1994年2月
15日～2月18日の4日間、船速（航時、低速、全速）
や船体の波との出会い角（横波、斜め波）の影響につ
いて調べた。また、装置をパッシブ方式とした場合につい
ても行ない、ハイブリッド方式との性能を比較した。各試
験項目につき、計測時間は15分間とし、船体横揺れ角、可
動マス変位、モータトルクなどの時刻波形を計測した。
後、統計解析およびスペクトル解析を行なった。

4.2 試験結果および考察
各試験項目における船体横揺れ角および減揺効果の結果の一覧を第2表に示す。同表では、停止時横波4ケース、航走時横波2ケースおよび航走時斜め波2ケースの各ケースをそれぞれ(a)～(h)で示しており、減揺効果は恒に定義している。また、船体横揺れの固有周期は、減揺装置による強制動揺試験の結果、4.83秒であった。

はじめに、停止時横波状態については、ハイブリッド方式、パッシブ方式のいずれも減揺効果が確認でき、横揺れ振幅の大値、有義値(1/3最大)およびハイブリッド方式の方が15〜20%程度小さくなっていることがわかる。条件(b)、(d)の状態は、もっとも頑著な減揺効果が確認できたケースで、非作動時に比べてハイブリッド方式は約1/3、パッシブ方式は約1/2に横揺れが低減している。このうち、(b)の場合の試験条件を第3表に、また、時刻歴波形を第7図に示す。このケースの平均横揺れ周期は約4.9秒で、ほぼ同調横揺れ状態であった。第7図より、可動マスの家数は、ハイブリッド方式の方がパッシブ方式に比べ10%程度大きくなっており、可動マスのストローグを制御により若干大きくとることで、パッシブ方式より性能が向上できていることがある。これは、第6図の数値計算結果の特性と良く一致している。一方、(c)の場合は他の3ケースに比べて減揺効果が低くなっているが、これは、平均横揺れ周期が約5.1秒で船体固有周期よりやや長めであったことに起因している。また、航走時横波では船体の揺れが大きくなるため、見かけ上、減揺効果は低下するが、ハイブリッド方式では、低速、全速いずれにおいても減揺効果が確認でき、パッシブ方式との性能差は停止時の場合と同程度となっている。

つきに、航走時斜め波の波には波が長周期となるため、ARTのようなパッシブな装置では顕著な減揺効果を得ることが難しいと考えられる。第3表および第8図に、条件(g)の場合の試験条件、時刻歴波形をそれぞれ示す。平均横揺れ周期は、約5.3秒で船体固有周期より長周期となっていること、パッシブ方式では減揺効果がみられない。それに対し、ハイブリッド方式では、約1/2に低減しており、装置作動による付加減揺が大きくとられ、広い周波数領域ではフラットな特性を持たせる本方式では、航走時の長周期な横揺れに対しても十分な減揺性能が確保できていることがわかる。

第2表 試験結果の一覧

<table>
<thead>
<tr>
<th>試験項目</th>
<th>種別</th>
<th>停止時横波 (a)</th>
<th>航走時横波 (b)</th>
<th>航走時斜波 (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大</td>
<td>非作動</td>
<td>6.13</td>
<td>5.81</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td>ハイブリッド作動</td>
<td>3.01 (51)</td>
<td>1.91 (67)</td>
<td>3.77 (34)</td>
</tr>
<tr>
<td></td>
<td>パッシブ作動</td>
<td>4.00 (35)</td>
<td>2.86 (51)</td>
<td>4.40 (23)</td>
</tr>
<tr>
<td>1/10最大</td>
<td>非作動</td>
<td>4.70 (38)</td>
<td>4.38 (49)</td>
<td>4.29 (38)</td>
</tr>
<tr>
<td></td>
<td>ハイブリッド作動</td>
<td>2.18 (38)</td>
<td>1.46 (49)</td>
<td>2.88 (38)</td>
</tr>
<tr>
<td></td>
<td>パッシブ作動</td>
<td>2.90 (38)</td>
<td>2.23 (64)</td>
<td>3.42 (38)</td>
</tr>
<tr>
<td>1/3最大</td>
<td>非作動</td>
<td>3.77 (38)</td>
<td>3.25 (49)</td>
<td>3.41 (21)</td>
</tr>
<tr>
<td></td>
<td>ハイブリッド作動</td>
<td>1.70 (55)</td>
<td>1.16 (64)</td>
<td>2.16 (37)</td>
</tr>
<tr>
<td></td>
<td>パッシブ作動</td>
<td>2.33 (38)</td>
<td>1.66 (49)</td>
<td>2.70 (38)</td>
</tr>
<tr>
<td>平均</td>
<td>非作動</td>
<td>2.43 (37)</td>
<td>2.05 (48)</td>
<td>2.35 (38)</td>
</tr>
<tr>
<td></td>
<td>ハイブリッド作動</td>
<td>1.13 (53)</td>
<td>0.74 (64)</td>
<td>1.35 (36)</td>
</tr>
<tr>
<td></td>
<td>パッシブ作動</td>
<td>1.53 (37)</td>
<td>1.07 (48)</td>
<td>1.76 (17)</td>
</tr>
</tbody>
</table>

(注) ( ) 内は次式で定義される減揺率 (％) を示す

\[
\text{減揺率} = \left( \frac{1 - \text{船体横揺れ角}}{\text{船体横揺れ角}} \right) \times 100
\]
5. 結 言

船舶の停船時における横揺れを低減するため、排水量190tの調査監視船を対象に可動マス3.5tのハイブリッド方式の能動型減揺装置を開発し、海上試験による性能確認を行なった。その結果、以下の結論が得られた。

1. ハイブリッド方式により、停船時横揺れ角の約1/3に低減することができた。これは、ARTに代表されるバップ方式に比べて15％程度性能が向上できたことに相当する。

2. バップ方式では低減が困難である航走時横揺れ波中においても、制御を取り入れたハイブリッド方式を採用することにより、船体横揺れ角を約1/2に低減することができた。

3. 実測結果は、理論計算結果と良好に一致した。

参考文献

（1）及川未紀，小池裕二，茶谷光一，重松邦治：能動型減揺装置の開発と実海域試験 日本造船学会論文集 第174号 1993年 pp.217-223

（2）谷田宏次，小池裕二，牟田口勝生，宇野名右衛門：アクティブとバップを組み合わせたハイブリッド方式制振装置の開発 日本機械学会論文集 57-534 C 1991年 pp.143-148

（3）谷田宏次：長大構造物へのアクティブ制御技術の適用状況 日本造船学会誌 第777号 1994年 pp.62-67

--- 謝辞 ---

本研究に際して、株式会社郵船海洋科学の森正彦博士（元、当社技監）から真摯なご指導をいただきました。ここに記し、深く感謝いたします。